000860301 001__ 860301
000860301 005__ 20200914100438.0
000860301 0247_ $$2doi$$a10.1016/S0010-4655(98)00187-8
000860301 0247_ $$2ISSN$$a0010-4655
000860301 0247_ $$2ISSN$$a1386-9485
000860301 0247_ $$2ISSN$$a1879-2944
000860301 037__ $$aFZJ-2019-01076
000860301 082__ $$a530
000860301 1001_ $$0P:(DE-HGF)0$$aBietenholz, W.$$b0
000860301 245__ $$aPreconditioning of improved and “perfect” fermion actions
000860301 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c1999
000860301 3367_ $$2DRIVER$$aarticle
000860301 3367_ $$2DataCite$$aOutput Types/Journal article
000860301 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600070657_27411
000860301 3367_ $$2BibTeX$$aARTICLE
000860301 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860301 3367_ $$00$$2EndNote$$aJournal Article
000860301 520__ $$aWe construct a locally-lexicographic SSOR preconditioner to accelerate the parallel iterative solution of linear systems of equations for two improved discretizations of lattice fermions: (i) the Sheikholeslami-Wohlen scheme Where a non-constant block-diagonal term is added to the Wilson fermion matrix and (ii) renormalization group improved actions which incorporate couplings beyond nearest neighbors of the lattice fermion fields. In case (i) we find the block ll-SSOR-scheme to be more effective by a factor ≈ 2 than odd-even preconditioned solvers in terms of convergence rates, at β = 6.0. For type (ii) actions, we show that our preconditioner accelerates the iterative solution of a linear system of hypercube fermions by a factor of 3 to 4.
000860301 588__ $$aDataset connected to CrossRef
000860301 7001_ $$0P:(DE-Juel1)132090$$aEicker, N.$$b1$$ufzj
000860301 7001_ $$0P:(DE-HGF)0$$aFrommer, A.$$b2
000860301 7001_ $$0P:(DE-Juel1)132179$$aLippert, Th.$$b3$$ufzj
000860301 7001_ $$0P:(DE-HGF)0$$aMedeke, B.$$b4
000860301 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b5
000860301 7001_ $$0P:(DE-HGF)0$$aWeuffen, G.$$b6
000860301 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/S0010-4655(98)00187-8$$gVol. 119, no. 1, p. 1 - 18$$n1$$p1 - 18$$tComputer physics communications$$v119$$x0010-4655$$y1999
000860301 909CO $$ooai:juser.fz-juelich.de:860301$$pextern4vita
000860301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132090$$aForschungszentrum Jülich$$b1$$kFZJ
000860301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b3$$kFZJ
000860301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000860301 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860301 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2017
000860301 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860301 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860301 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860301 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860301 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860301 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860301 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860301 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860301 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860301 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860301 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860301 9801_ $$aEXTERN4VITA
000860301 980__ $$ajournal
000860301 980__ $$aEDITORS
000860301 980__ $$aI:(DE-Juel1)JSC-20090406
000860301 980__ $$aI:(DE-Juel1)NIC-20090406