001     860313
005     20200914095632.0
024 7 _ |a 10.1103/PhysRevD.58.071503
|2 doi
024 7 _ |a 0556-2821
|2 ISSN
024 7 _ |a 1089-4918
|2 ISSN
024 7 _ |a 1538-4500
|2 ISSN
024 7 _ |a 1550-2368
|2 ISSN
024 7 _ |a 1550-7998
|2 ISSN
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
037 _ _ |a FZJ-2019-01088
082 _ _ |a 530
100 1 _ |a Allés, B.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Scanning the topological sectors of the QCD vacuum with the hybrid Monte Carlo algorithm
260 _ _ |a Melville, NY
|c 1998
|b Inst.812068
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 1998-09-09
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 1998-09-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600070161_30204
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We address a long standing issue and determine the decorrelation efficiency of the hybrid Monte Carlo algorithm (HMC), for full QCD with Wilson fermions, with respect to vacuum topology. On the basis of five large QCD vacuum field ensembles (with 3000 to 5000 trajectories each and mπ/mρ- ratios in the range ⩾0.69, for two sea quark flavors), we are able to establish that HMC provides sufficient tunneling between the different topological sectors of QCD. This will have an important bearing on the prospect to determine, by lattice techniques, the topological susceptibility of the vacuum, and topology sensitive quantities such as the spin content of the proton, or the η′ mass.
542 _ _ |i 1998-09-09
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bali, G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a D’Elia, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Di Giacomo, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eicker, N.
|0 P:(DE-Juel1)132090
|b 4
|u fzj
700 1 _ |a Schilling, K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Spitz, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Güsken, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hoeber, H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lippert, Th.
|0 P:(DE-Juel1)132179
|b 9
|u fzj
700 1 _ |a Struckmann, T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ueberholz, P.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Viehoff, J.
|0 P:(DE-HGF)0
|b 12
773 1 8 |a 10.1103/physrevd.58.071503
|b : American Physical Society (APS), 1998-09-09
|n 7
|p 071503
|3 journal-article
|2 Crossref
|t Physical Review D
|v 58
|y 1998
|x 0556-2821
773 _ _ |a 10.1103/PhysRevD.58.071503
|g Vol. 58, no. 7, p. 071503
|0 PERI:(DE-600)2844732-3
|n 7
|p 071503
|t Physical review / D
|v 58
|y 1998
|x 0556-2821
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:860313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132090
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)132179
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 1 _ |a EXTERN4VITA


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21