000860318 001__ 860318
000860318 005__ 20211102163046.0
000860318 0247_ $$2doi$$a10.1103/PhysRevD.59.114502
000860318 0247_ $$2ISSN$$a0556-2821
000860318 0247_ $$2ISSN$$a1089-4918
000860318 0247_ $$2ISSN$$a1538-4500
000860318 0247_ $$2ISSN$$a1550-2368
000860318 0247_ $$2ISSN$$a1550-7998
000860318 0247_ $$2ISSN$$a2470-0010
000860318 0247_ $$2ISSN$$a2470-0029
000860318 037__ $$aFZJ-2020-03099
000860318 082__ $$a530
000860318 1001_ $$0P:(DE-HGF)0$$aGüsken, S.$$b0
000860318 245__ $$aFlavor singlet axial vector coupling of the proton with dynamical Wilson fermions
000860318 260__ $$aMelville, NY$$bInst.812068$$c1999
000860318 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c1999-04-27
000860318 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c1999-04-01
000860318 3367_ $$2DRIVER$$aarticle
000860318 3367_ $$2DataCite$$aOutput Types/Journal article
000860318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600070874_28885
000860318 3367_ $$2BibTeX$$aARTICLE
000860318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860318 3367_ $$00$$2EndNote$$aJournal Article
000860318 520__ $$aWe present the results of a full QCD lattice calculation of the flavor singlet axial vector coupling G1A of the proton. The simulation has been carried out on a 163×32 lattice at β=5.6 with nf=2 dynamical Wilson fermions. It turns out that the statistical quality of the connected contribution to G1A is excellent, whereas the disconnected part is accessible but suffers from large statistical fluctuations. Using a 1st order tadpole improved renormalization constant ZA, we estimate G1A=0.20(12).
000860318 542__ $$2Crossref$$i1999-04-27$$uhttp://link.aps.org/licenses/aps-default-license
000860318 588__ $$aDataset connected to CrossRef
000860318 7001_ $$0P:(DE-HGF)0$$aUeberholz, P.$$b1
000860318 7001_ $$0P:(DE-HGF)0$$aViehoff, J.$$b2
000860318 7001_ $$0P:(DE-Juel1)132090$$aEicker, N.$$b3$$ufzj
000860318 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b4$$ufzj
000860318 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b5
000860318 7001_ $$0P:(DE-HGF)0$$aSpitz, A.$$b6
000860318 7001_ $$0P:(DE-HGF)0$$aStruckmann, T.$$b7
000860318 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.59.114502$$b: American Physical Society (APS), 1999-04-27$$n11$$p114502$$tPhysical Review D$$v59$$x0556-2821$$y1999
000860318 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.59.114502$$gVol. 59, no. 11, p. 114502$$n11$$p114502$$tPhysical review / D$$v59$$x0556-2821$$y1999
000860318 909CO $$ooai:juser.fz-juelich.de:860318$$pextern4vita
000860318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132090$$aForschungszentrum Jülich$$b3$$kFZJ
000860318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b4$$kFZJ
000860318 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000860318 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860318 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016
000860318 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860318 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860318 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860318 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860318 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860318 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860318 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860318 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860318 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860318 980__ $$ajournal
000860318 980__ $$aEDITORS
000860318 980__ $$aI:(DE-Juel1)JSC-20090406
000860318 980__ $$aI:(DE-Juel1)NIC-20090406
000860318 9801_ $$aEXTERN4VITA