000860320 001__ 860320
000860320 005__ 20240610120317.0
000860320 0247_ $$2doi$$a10.1039/C8TA11298C
000860320 0247_ $$2ISSN$$a2050-7488
000860320 0247_ $$2ISSN$$a2050-7496
000860320 0247_ $$2Handle$$a2128/21518
000860320 0247_ $$2WOS$$aWOS:000457268300027
000860320 037__ $$aFZJ-2019-01095
000860320 082__ $$a530
000860320 1001_ $$0P:(DE-HGF)0$$aKühl, S.$$b0
000860320 245__ $$aConcave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts
000860320 260__ $$aLondon$$bRSC72819$$c2019
000860320 3367_ $$2DRIVER$$aarticle
000860320 3367_ $$2DataCite$$aOutput Types/Journal article
000860320 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599650160_20795
000860320 3367_ $$2BibTeX$$aARTICLE
000860320 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860320 3367_ $$00$$2EndNote$$aJournal Article
000860320 520__ $$aStudies that demonstrated enhanced electrocatalytic oxygen reduction activities of octahedral PtNi nanocatalysts have routinely motivated and explained their data by the structure-sensitivity of PtNi alloy surfaces in general, more specifically by the favourable performance of the annealed Pt3Ni(111) single crystal surface with a monoatomic Pt skin, in particular. In this contribution, we challenge this view and show that imperfect Ni-enriched {111} nanofacets with concave Pt curvature catalytically outperform flat, well-alloyed, locally ordered {111} and {100} nanofacets in cuboctahedral nanoparticles. To achieve this, we investigate the geometric, compositional, and morphological structure on the ensemble and on the individual particle level of PtNi alloy nano-octahedra. In particular, we track the correlations of these parameters after thermal annealing and link them to their catalytic activity. The level of local compositional and structural disorder appears to be a reliable descriptor and predictor for ORR activity – at least within a family of catalysts. After annealing up to 300 °C, concave Pt {111} facets, with partially flat Ni facets, remained most prevalent, resulting in nanoparticles with pronounced elemental anisotropy. At higher annealing temperature, concave Pt morphologies gave way to cuboctahedra with healed flat {111} and {100} alloy facets. The imperfect concave nano-octahedral catalysts with enhanced local disorder invariably outperformed more ordered particles, yet lagged behind in morphological stability. Faceted PtNi nano-cuboctahedra emerging at 400 °C ultimately offered the most reasonable balance between moderately high activity and good morphological stability. This is why we propose these cuboctahedral shaped Pt alloy nanoparticles as promising PEM cathode fuel cell catalyst of choice. While the present results do not invalidate the exceptional oxygen reduction activity of perfect Pt3Ni(111) “skin” single crystal surfaces, they shed new light on the decade old puzzle about structure–activity relationships of PtNi octahedral nanocrystals.
000860320 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860320 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x1
000860320 588__ $$aDataset connected to CrossRef
000860320 7001_ $$0P:(DE-Juel1)161464$$aGocyla, M.$$b1
000860320 7001_ $$0P:(DE-HGF)0$$aHeyen, H.$$b2
000860320 7001_ $$0P:(DE-HGF)0$$aSelve, S.$$b3
000860320 7001_ $$0P:(DE-Juel1)130695$$aHeggen, M.$$b4
000860320 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b5
000860320 7001_ $$00000-0002-3884-436X$$aStrasser, P.$$b6$$eCorresponding author
000860320 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C8TA11298C$$gVol. 7, no. 3, p. 1149 - 1159$$n3$$p1149 - 1159$$tJournal of materials chemistry / A Materials for energy and sustainability A$$v7$$x2050-7496$$y2019
000860320 8564_ $$uhttps://juser.fz-juelich.de/record/860320/files/c8ta11298c.pdf$$yOpenAccess
000860320 8564_ $$uhttps://juser.fz-juelich.de/record/860320/files/c8ta11298c.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860320 909CO $$ooai:juser.fz-juelich.de:860320$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860320 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b4$$kFZJ
000860320 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000860320 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860320 9141_ $$y2019
000860320 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000860320 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860320 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860320 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2017
000860320 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2017
000860320 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860320 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860320 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860320 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860320 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000860320 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860320 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860320 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860320 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860320 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000860320 9801_ $$aFullTexts
000860320 980__ $$ajournal
000860320 980__ $$aVDB
000860320 980__ $$aI:(DE-Juel1)PGI-5-20110106
000860320 980__ $$aUNRESTRICTED
000860320 981__ $$aI:(DE-Juel1)ER-C-1-20170209