000860322 001__ 860322
000860322 005__ 20200914101148.0
000860322 0247_ $$2doi$$a10.1103/PhysRevD.62.054503
000860322 0247_ $$2ISSN$$a0556-2821
000860322 0247_ $$2ISSN$$a1089-4918
000860322 0247_ $$2ISSN$$a1538-4500
000860322 0247_ $$2ISSN$$a1550-2368
000860322 0247_ $$2ISSN$$a1550-7998
000860322 0247_ $$2ISSN$$a2470-0010
000860322 0247_ $$2ISSN$$a2470-0029
000860322 037__ $$aFZJ-2019-01097
000860322 082__ $$a530
000860322 1001_ $$0P:(DE-HGF)0$$aBali, Gunnar S.$$b0
000860322 245__ $$aStatic potentials and glueball masses from QCD simulations with Wilson sea quarks
000860322 260__ $$aMelville, NY$$bInst.812068$$c2000
000860322 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2000-07-26
000860322 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2000-07-01
000860322 3367_ $$2DRIVER$$aarticle
000860322 3367_ $$2DataCite$$aOutput Types/Journal article
000860322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600071082_28826
000860322 3367_ $$2BibTeX$$aARTICLE
000860322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860322 3367_ $$00$$2EndNote$$aJournal Article
000860322 520__ $$aWe calculate glueball and torelon masses as well as the lowest lying hybrid potential in addition to the static ground state potential in lattice simulations of QCD with two flavors of dynamical Wilson fermions. The results are obtained on lattices with 163×32 and 243×40 sites at β=5.6, corresponding to a lattice spacing a−1=2.65+5−8GeV, as determined from the Sommer force radius, at physical sea quark mass. The range spanned in the present study of five different quark masses is reflected in the ratios 0.83>~mπ/mρ>~0.57.
000860322 542__ $$2Crossref$$i2000-07-26$$uhttp://link.aps.org/licenses/aps-default-license
000860322 588__ $$aDataset connected to CrossRef
000860322 7001_ $$0P:(DE-HGF)0$$aBolder, Bram$$b1
000860322 7001_ $$0P:(DE-Juel1)132090$$aEicker, Norbert$$b2$$ufzj
000860322 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b3$$ufzj
000860322 7001_ $$0P:(DE-Juel1)132215$$aOrth, Boris$$b4$$ufzj
000860322 7001_ $$0P:(DE-HGF)0$$aUeberholz, Peer$$b5
000860322 7001_ $$0P:(DE-HGF)0$$aSchilling, Klaus$$b6
000860322 7001_ $$0P:(DE-HGF)0$$aStruckmann, Thorsten$$b7
000860322 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.62.054503$$b: American Physical Society (APS), 2000-07-26$$n5$$p054503$$tPhysical Review D$$v62$$x0556-2821$$y2000
000860322 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.62.054503$$gVol. 62, no. 5, p. 054503$$n5$$p054503$$tPhysical review / D$$v62$$x0556-2821$$y2000
000860322 909CO $$ooai:juser.fz-juelich.de:860322$$pextern4vita
000860322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132090$$aForschungszentrum Jülich$$b2$$kFZJ
000860322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b3$$kFZJ
000860322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132215$$aForschungszentrum Jülich$$b4$$kFZJ
000860322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016
000860322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860322 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860322 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860322 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860322 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860322 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860322 980__ $$ajournal
000860322 980__ $$aEDITORS
000860322 980__ $$aI:(DE-Juel1)JSC-20090406
000860322 980__ $$aI:(DE-Juel1)NIC-20090406
000860322 980__ $$aI:(DE-Juel1)ZB-20090406
000860322 9801_ $$aEXTERN4VITA