000860337 001__ 860337
000860337 005__ 20200914094143.0
000860337 0247_ $$2doi$$a10.1142/S0129183195000538
000860337 0247_ $$2ISSN$$a0129-1831
000860337 0247_ $$2ISSN$$a1793-6586
000860337 037__ $$aFZJ-2019-01112
000860337 082__ $$a530
000860337 1001_ $$0P:(DE-HGF)0$$aFROMMER, ANDREAS$$b0
000860337 245__ $$aMANY MASSES ON ONE STROKE: ECONOMIC COMPUTATION OF QUARK PROPAGATORS
000860337 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c1995
000860337 3367_ $$2DRIVER$$aarticle
000860337 3367_ $$2DataCite$$aOutput Types/Journal article
000860337 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600069287_27503
000860337 3367_ $$2BibTeX$$aARTICLE
000860337 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860337 3367_ $$00$$2EndNote$$aJournal Article
000860337 520__ $$aThe computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients).Based on the decomposition M/κ = 1/κ−D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage.Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.
000860337 588__ $$aDataset connected to CrossRef
000860337 7001_ $$0P:(DE-HGF)0$$aNÖCKEL, BERTOLD$$b1
000860337 7001_ $$0P:(DE-HGF)0$$aGÜSKEN, STEPHAN$$b2
000860337 7001_ $$0P:(DE-Juel1)132179$$aLIPPERT, THOMAS$$b3$$ufzj
000860337 7001_ $$0P:(DE-HGF)0$$aSCHILLING, KLAUS$$b4
000860337 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S0129183195000538$$gVol. 06, no. 05, p. 627 - 638$$n05$$p627 - 638$$tInternational journal of modern physics / C Computational physics and physical computation C$$v06$$x1793-6586$$y1995
000860337 909CO $$ooai:juser.fz-juelich.de:860337$$pextern4vita
000860337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b3$$kFZJ
000860337 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS C : 2017
000860337 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860337 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860337 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860337 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860337 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860337 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860337 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860337 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860337 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860337 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860337 9801_ $$aEXTERN4VITA
000860337 980__ $$ajournal
000860337 980__ $$aEDITORS
000860337 980__ $$aI:(DE-Juel1)JSC-20090406
000860337 980__ $$aI:(DE-Juel1)NIC-20090406