000860338 001__ 860338
000860338 005__ 20200914094551.0
000860338 0247_ $$2doi$$a10.1142/S0129183196000533
000860338 0247_ $$2ISSN$$a0129-1831
000860338 0247_ $$2ISSN$$a1793-6586
000860338 037__ $$aFZJ-2019-01113
000860338 082__ $$a530
000860338 1001_ $$0P:(DE-HGF)0$$aGLÄSSNER, UWE$$b0
000860338 245__ $$aHOW TO COMPUTE GREEN'S FUNCTIONS FOR ENTIRE MASS TRAJECTORIES WITHIN KRYLOV SOLVERS
000860338 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c1996
000860338 3367_ $$2DRIVER$$aarticle
000860338 3367_ $$2DataCite$$aOutput Types/Journal article
000860338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600069510_27411
000860338 3367_ $$2BibTeX$$aARTICLE
000860338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860338 3367_ $$00$$2EndNote$$aJournal Article
000860338 520__ $$aThe availability of efficient Krylov subspace solvers plays a vital role in the solution of a variety of numerical problems in computational science. Here we consider lattice field theory. We present a new general numerical method to compute many Green's functions for complex non-singular matrices within one iteration process. Our procedure applies to matrices of structure A = D − m, with m proportional to the unit matrix, and can be integrated within any Krylov subspace solver. We can compute the derivatives x(n) of the solution vector x with respect to the parameter m and construct the Taylor expansion of x around m. We demonstrate the advantages of our method using a minimal residual solver. Here the procedure requires one intermediate vector for each Green's function to compute. As real-life example, we determine a mass trajectory of the Wilson fermion matrix for lattice QCD. Here we find that we can obtain Green's functions at all masses ≥ m at the price of one inversion at mass m.
000860338 588__ $$aDataset connected to CrossRef
000860338 7001_ $$0P:(DE-HGF)0$$aGÜSKEN, STEPHAN$$b1
000860338 7001_ $$0P:(DE-Juel1)132179$$aLIPPERT, THOMAS$$b2$$ufzj
000860338 7001_ $$0P:(DE-HGF)0$$aRITZENHÖFER, GERO$$b3
000860338 7001_ $$0P:(DE-HGF)0$$aSCHILLING, KLAUS$$b4
000860338 7001_ $$0P:(DE-HGF)0$$aFROMMER, ANDREAS$$b5
000860338 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S0129183196000533$$gVol. 07, no. 05, p. 635 - 644$$n05$$p635 - 644$$tInternational journal of modern physics / C Computational physics and physical computation C$$v07$$x1793-6586$$y1996
000860338 909CO $$ooai:juser.fz-juelich.de:860338$$pextern4vita
000860338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b2$$kFZJ
000860338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS C : 2017
000860338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860338 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860338 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860338 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860338 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860338 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860338 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860338 9801_ $$aEXTERN4VITA
000860338 980__ $$ajournal
000860338 980__ $$aEDITORS
000860338 980__ $$aI:(DE-Juel1)JSC-20090406
000860338 980__ $$aI:(DE-Juel1)NIC-20090406