000860343 001__ 860343
000860343 005__ 20200914095741.0
000860343 0247_ $$2doi$$a10.1109/71.663861
000860343 0247_ $$2ISSN$$a1045-9219
000860343 0247_ $$2ISSN$$a1558-2183
000860343 0247_ $$2ISSN$$a2161-9883
000860343 037__ $$aFZJ-2019-01118
000860343 082__ $$a004
000860343 1001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b0$$ufzj
000860343 245__ $$aHyper-systolic parallel computing
000860343 260__ $$aNew York, NY$$bIEEE$$c1998
000860343 3367_ $$2DRIVER$$aarticle
000860343 3367_ $$2DataCite$$aOutput Types/Journal article
000860343 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600070236_27503
000860343 3367_ $$2BibTeX$$aARTICLE
000860343 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860343 3367_ $$00$$2EndNote$$aJournal Article
000860343 520__ $$aWe introduce a new class of parallel algorithms for the exact computation of systems with pairwise mutual interactions of n elements, so called n/sup 2/-problems. Hitherto, practical conventional parallelization strategies could achieve a complexity of O(np) with respect to the inter-processor communication, p being the number of processors. Our new approach can reduce the inter-processor communication complexity to a number O(np). In the framework of Additive Number Theory, the determination of the optimal communication pattern can be formulated as h-range minimization problem that can be solved numerically. Based on a complexity model, the scaling behavior of the new algorithm is numerically tested on the connection machine CM5. As a real life example, we have implemented a fast code for globular cluster n-body simulations, a generic n/sup 2/-problem, on the CRAY T3D, with striking success. Our parallel method promises to be useful in various scientific and engineering fields like polymer chain computations, protein folding, signal processing, and, in particular, for parallel level-3 BLAS.
000860343 588__ $$aDataset connected to CrossRef
000860343 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, A.$$b1$$ufzj
000860343 7001_ $$0P:(DE-HGF)0$$aBode, A.$$b2
000860343 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b3
000860343 773__ $$0PERI:(DE-600)2027774-X$$a10.1109/71.663861$$gVol. 9, no. 2, p. 97 - 108$$n2$$p97 - 108$$tIEEE transactions on parallel and distributed systems$$v9$$x1045-9219$$y1998
000860343 909CO $$ooai:juser.fz-juelich.de:860343$$pextern4vita
000860343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b0$$kFZJ
000860343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b1$$kFZJ
000860343 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000860343 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860343 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T PARALL DISTR : 2017
000860343 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860343 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860343 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860343 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860343 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860343 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860343 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860343 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860343 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860343 9801_ $$aEXTERN4VITA
000860343 980__ $$ajournal
000860343 980__ $$aEDITORS
000860343 980__ $$aI:(DE-Juel1)JSC-20090406
000860343 980__ $$aI:(DE-Juel1)NIC-20090406