000860416 001__ 860416
000860416 005__ 20240619083552.0
000860416 0247_ $$2doi$$a10.1063/1.5080333
000860416 0247_ $$2ISSN$$a0021-9606
000860416 0247_ $$2ISSN$$a1089-7690
000860416 0247_ $$2ISSN$$a1520-9032
000860416 0247_ $$2Handle$$a2128/21524
000860416 0247_ $$2pmid$$apmid:30621405
000860416 0247_ $$2WOS$$aWOS:000455350900023
000860416 0247_ $$2altmetric$$aaltmetric:53604503
000860416 037__ $$aFZJ-2019-01186
000860416 041__ $$aEnglish
000860416 082__ $$a530
000860416 1001_ $$00000-0003-4121-8316$$aMetri, Vishal$$b0
000860416 245__ $$aBrownian dynamics investigation of the Boltzmann superposition principle for orthogonal superposition rheology
000860416 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2019
000860416 3367_ $$2DRIVER$$aarticle
000860416 3367_ $$2DataCite$$aOutput Types/Journal article
000860416 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549021968_6466
000860416 3367_ $$2BibTeX$$aARTICLE
000860416 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860416 3367_ $$00$$2EndNote$$aJournal Article
000860416 520__ $$aThe most general linear equation describing the stress response at time t to a time-dependent shearing perturbation may be written as the integral over the past history t′ of a time dependent relaxation modulus, depending on t − t′, multiplied by the perturbing shear rate at time t′. This is in agreement with the Boltzmann superposition principle, which says that the stress response of a system to a time dependent shearing deformation may be written as the sum of responses to a sequence of step-strain perturbations in the past. In equilibrium rheology, the Boltzmann superposition principle gives rise to the equality of the shear relaxation modulus, obtained from oscillatory experiments, and the stress relaxation modulus measured after a step-strain perturbation. In this paper, we describe the results of Brownian dynamics simulations of a simple soft matter system showing that the same conclusion does not hold when the system is steadily sheared in a direction perpendicular to the probing flows, and with a gradient parallel to that of the probing deformations, as in orthogonal superposition rheology. In fact, we find that the oscillatory relaxation modulus differs from the step-strain modulus even for the smallest orthogonal shear flows that we could simulate. We do find, however, that the initial or plateau levels of both methods agree and provide an equation relating the plateau value to the perturbation of the pair-function.
000860416 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000860416 588__ $$aDataset connected to CrossRef
000860416 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b1$$eCorresponding author$$ufzj
000860416 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5080333$$gVol. 150, no. 1, p. 014903 -$$n1$$p014903 -$$tThe journal of chemical physics$$v150$$x1089-7690$$y2019
000860416 8564_ $$uhttps://juser.fz-juelich.de/record/860416/files/1.5080333.pdf$$yPublished on 2019-01-04. Available in OpenAccess from 2020-01-04.
000860416 8564_ $$uhttps://juser.fz-juelich.de/record/860416/files/1.5080333.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-01-04. Available in OpenAccess from 2020-01-04.
000860416 909CO $$ooai:juser.fz-juelich.de:860416$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b1$$kFZJ
000860416 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000860416 9141_ $$y2019
000860416 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860416 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860416 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000860416 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000860416 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860416 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860416 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860416 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860416 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860416 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860416 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860416 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860416 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860416 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000860416 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860416 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860416 920__ $$lyes
000860416 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000860416 9801_ $$aFullTexts
000860416 980__ $$ajournal
000860416 980__ $$aVDB
000860416 980__ $$aUNRESTRICTED
000860416 980__ $$aI:(DE-Juel1)ICS-3-20110106