Home > Publications database > Brownian dynamics investigation of the Boltzmann superposition principle for orthogonal superposition rheology > print |
001 | 860416 | ||
005 | 20240619083552.0 | ||
024 | 7 | _ | |a 10.1063/1.5080333 |2 doi |
024 | 7 | _ | |a 0021-9606 |2 ISSN |
024 | 7 | _ | |a 1089-7690 |2 ISSN |
024 | 7 | _ | |a 1520-9032 |2 ISSN |
024 | 7 | _ | |a 2128/21524 |2 Handle |
024 | 7 | _ | |a pmid:30621405 |2 pmid |
024 | 7 | _ | |a WOS:000455350900023 |2 WOS |
024 | 7 | _ | |a altmetric:53604503 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01186 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Metri, Vishal |0 0000-0003-4121-8316 |b 0 |
245 | _ | _ | |a Brownian dynamics investigation of the Boltzmann superposition principle for orthogonal superposition rheology |
260 | _ | _ | |a Melville, NY |c 2019 |b American Institute of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1549021968_6466 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The most general linear equation describing the stress response at time t to a time-dependent shearing perturbation may be written as the integral over the past history t′ of a time dependent relaxation modulus, depending on t − t′, multiplied by the perturbing shear rate at time t′. This is in agreement with the Boltzmann superposition principle, which says that the stress response of a system to a time dependent shearing deformation may be written as the sum of responses to a sequence of step-strain perturbations in the past. In equilibrium rheology, the Boltzmann superposition principle gives rise to the equality of the shear relaxation modulus, obtained from oscillatory experiments, and the stress relaxation modulus measured after a step-strain perturbation. In this paper, we describe the results of Brownian dynamics simulations of a simple soft matter system showing that the same conclusion does not hold when the system is steadily sheared in a direction perpendicular to the probing flows, and with a gradient parallel to that of the probing deformations, as in orthogonal superposition rheology. In fact, we find that the oscillatory relaxation modulus differs from the step-strain modulus even for the smallest orthogonal shear flows that we could simulate. We do find, however, that the initial or plateau levels of both methods agree and provide an equation relating the plateau value to the perturbation of the pair-function. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Briels, Willem |0 P:(DE-Juel1)159317 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1063/1.5080333 |g Vol. 150, no. 1, p. 014903 - |0 PERI:(DE-600)1473050-9 |n 1 |p 014903 - |t The journal of chemical physics |v 150 |y 2019 |x 1089-7690 |
856 | 4 | _ | |y Published on 2019-01-04. Available in OpenAccess from 2020-01-04. |u https://juser.fz-juelich.de/record/860416/files/1.5080333.pdf |
856 | 4 | _ | |y Published on 2019-01-04. Available in OpenAccess from 2020-01-04. |x pdfa |u https://juser.fz-juelich.de/record/860416/files/1.5080333.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:860416 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159317 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-3-20110106 |k ICS-3 |l Weiche Materie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-3-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|