000860421 001__ 860421
000860421 005__ 20240708132716.0
000860421 037__ $$aFZJ-2019-01191
000860421 041__ $$aEnglish
000860421 1001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b0$$eCorresponding author$$ufzj
000860421 1112_ $$aEuropean Conference on Nanofilms 2018$$cCranfield$$d2018-03-20 - 2018-03-22$$gECNF 2018$$wUK
000860421 245__ $$aBehavior of micro-scaled composite TBCs under corrosive attack by CMAS deposits
000860421 260__ $$c2018
000860421 3367_ $$033$$2EndNote$$aConference Paper
000860421 3367_ $$2DataCite$$aOther
000860421 3367_ $$2BibTeX$$aINPROCEEDINGS
000860421 3367_ $$2DRIVER$$aconferenceObject
000860421 3367_ $$2ORCID$$aLECTURE_SPEECH
000860421 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1549433153_12068$$xPlenary/Keynote
000860421 520__ $$aFacing the demands on efficiency and operational flexibility of gas turbines thermal barrier coatings (TBCs) are being developed with considerable progress to allow increased turbine inlet temperatures. Advanced ceramics were identified in terms of the relevant materials properties as e.g. high temperature phase stability, thermal conductivity, thermal expansion, fracture toughness, etc. Based on this data, typical approaches to improve TBC capabilities comprise multi-layer coating designs where individual layers of advanced materials are intended to contribute their best-ranked functionality to withstand the harsh environments.Since some years, in addition to the extreme thermo-mechanical loads also degradation due to meltable deposits from various sources has become a persistent challenge in the hottest part of the gas turbines. The corrosive attack from CaO-MgO-Al2O3-SiO2 related deposits (CMAS) in most cases imposes major changes on microstructure and chemistry of the outer coating layers which also affect their thermo-mechanical properties. Recent results are reviewed, where micro-scaled composites were effectively able to counter-balance unfavourable effects from corrosive degradation and provide superior performance compared to single phase materials intended for CMAS mitigation.
000860421 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000860421 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b1$$ufzj
000860421 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b2$$ufzj
000860421 909CO $$ooai:juser.fz-juelich.de:860421$$pVDB
000860421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b0$$kFZJ
000860421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b1$$kFZJ
000860421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000860421 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000860421 9141_ $$y2019
000860421 920__ $$lyes
000860421 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860421 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000860421 980__ $$aconf
000860421 980__ $$aVDB
000860421 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860421 980__ $$aI:(DE-82)080011_20140620
000860421 980__ $$aUNRESTRICTED
000860421 981__ $$aI:(DE-Juel1)IMD-2-20101013