000860441 001__ 860441 000860441 005__ 20240610120330.0 000860441 0247_ $$2doi$$a10.1109/TASC.2019.2892078 000860441 0247_ $$2WOS$$aWOS:000457591700001 000860441 037__ $$aFZJ-2019-01195 000860441 082__ $$a620 000860441 1001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b0$$eCorresponding author 000860441 245__ $$aπ-Loops With ds Josephson Junctions 000860441 260__ $$aNew York, NY$$bIEEE$$c2019 000860441 3367_ $$2DRIVER$$aarticle 000860441 3367_ $$2DataCite$$aOutput Types/Journal article 000860441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599651855_20791 000860441 3367_ $$2BibTeX$$aARTICLE 000860441 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000860441 3367_ $$00$$2EndNote$$aJournal Article 000860441 520__ $$aWe fabricated Josephson junctions (JJs) between the d-wave superconductor (SC) YBa 2 Cu 3 O 7 -x (YBCO) and the s-wave SC Nb (ds-JJs) on graphoepitaxially buffered MgO substrates, studied ds-JJs at temperatures down to 30 mK and employed these JJs in π-loops. Current-voltage characteristics of ds-JJs oriented along the [100] axis of YBCO exhibited up to a factor of 200 higher critical current densities than ds-JJs oriented along the [110] axis of YBCO. The critical current Ic and the IcRn product of [100]-oriented 3 μm wide ds-JJs are ∼70 μA and ∼200 μV, respectively, at 4.2 K. Rectangular arrays of up to 40 000 π-loops based on such ds-JJs were investigated using a low temperature scanning superconducting quantum interference device (SQUID) microscope. We observed ordering of spontaneously generated half integer magnetic flux quanta in the π-loops correlated with minute spurious background magnetic fields, as well as with configurations and mutual coupling of the π-loops. We manipulated the magnetic states of the π-loops by the local application of magnetic fields using nearby planar coils. This paper paves the way for the use of π-loops in computations that are based on annealing processes. 000860441 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000860441 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1 000860441 588__ $$aDataset connected to CrossRef 000860441 7001_ $$0P:(DE-HGF)0$$aReith, P.$$b1 000860441 7001_ $$0P:(DE-HGF)0$$aStolyarov, V. S.$$b2 000860441 7001_ $$0P:(DE-HGF)0$$aGolovchanskiy, I. A.$$b3 000860441 7001_ $$0P:(DE-HGF)0$$aGolubov, A. A.$$b4 000860441 7001_ $$0P:(DE-HGF)0$$aHilgenkamp, H.$$b5 000860441 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b6 000860441 773__ $$0PERI:(DE-600)2025387-4$$a10.1109/TASC.2019.2892078$$gVol. 29, no. 5, p. 1 - 5$$n5$$p1 - 5$$tIEEE transactions on applied superconductivity$$v29$$x1051-8223$$y2019 000860441 8564_ $$uhttps://juser.fz-juelich.de/record/860441/files/08606963.pdf$$yRestricted 000860441 8564_ $$uhttps://juser.fz-juelich.de/record/860441/files/08606963.pdf?subformat=pdfa$$xpdfa$$yRestricted 000860441 909CO $$ooai:juser.fz-juelich.de:860441$$pVDB 000860441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ 000860441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ 000860441 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000860441 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1 000860441 9141_ $$y2019 000860441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T APPL SUPERCON : 2017 000860441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000860441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000860441 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000860441 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000860441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000860441 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000860441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000860441 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000860441 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000860441 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000860441 920__ $$lyes 000860441 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000860441 980__ $$ajournal 000860441 980__ $$aVDB 000860441 980__ $$aI:(DE-Juel1)PGI-5-20110106 000860441 980__ $$aUNRESTRICTED 000860441 981__ $$aI:(DE-Juel1)ER-C-1-20170209