001     860443
005     20240619083552.0
024 7 _ |a 10.1021/acs.langmuir.8b03614
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a 2128/21530
|2 Handle
024 7 _ |a pmid:30607956
|2 pmid
024 7 _ |a WOS:000457503500019
|2 WOS
037 _ _ |a FZJ-2019-01197
082 _ _ |a 540
100 1 _ |a Wang, Zilin
|0 P:(DE-Juel1)144087
|b 0
245 _ _ |a Thermophoresis of a Colloidal Rod: Contributions of Charge and Grafted Polymers
260 _ _ |a Washington, DC
|c 2019
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549281813_13266
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study we investigated the thermodiffusion behavior of a colloidal model system as function of Debye length, $\lambda_{\mathrm {DH}}$, which is controlled by the ionic strength. Our system consists of an fd-virus grafted with polyethylene glycol (PEG) with a molecular mass of 5000 g/mol. The results are compared with recent measurements on bare \textit{fd}-virus and results of PEG. The diffusion coefficients of both viruses are comparable and increase with increasing Debye length. The thermal diffusion coefficient, $D_{\mathrm T}$, of the bare virus increases strongly with the Debye length, while $D_{\mathrm T}$ of the grafted fd-virus shows only a very weak increase. The Debye length dependence of both systems can be described with an expression derived for charged rods using the surface charge density and an offset of $D_{\mathrm T}$ as adjustable parameters. It turns out that the ratio of the determined surface charges is inverse to the ratio of the surfaces of the two systems, which means that the total charge remains almost constant. The determined offset of the grafted fd-virus describing the chemical contributions is the sum of $D_{\mathrm T}$ of PEG and the offset of the bare \textit{fd}-virus. At high $\lambda_{\mathrm DH}$, corresponding to low ionic strength, the $S_{\mathrm T}$-values of both colloidal model systems approach each other. This implies a contribution from the polymer layer, which is strong at short $\lambda_{\mathrm DH}$ and fades out for the longer Debye lengths, when the electric double layer reaches further than the polymer chains and therefore dominates interactions with the surrounding water.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 1
|u fzj
700 1 _ |a Buitenhuis, Johan
|0 P:(DE-Juel1)130577
|b 2
700 1 _ |a Liu, Yi
|0 P:(DE-Juel1)159482
|b 3
|u fzj
700 1 _ |a Lang, Peter R.
|0 P:(DE-Juel1)130789
|b 4
|u fzj
700 1 _ |a Dhont, Jan K. G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.langmuir.8b03614
|g Vol. 35, no. 4, p. 1000 - 1007
|0 PERI:(DE-600)2005937-1
|n 4
|p 1000 - 1007
|t Langmuir
|v 35
|y 2019
|x 1520-5827
856 4 _ |u https://juser.fz-juelich.de/record/860443/files/acs.langmuir.8b03614.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860443/files/supplementary-03.pdf
|y Restricted
856 4 _ |y Published on 2019-01-04. Available in OpenAccess from 2020-01-04.
|u https://juser.fz-juelich.de/record/860443/files/PEG-fd-ACS-revised.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860443/files/supplementary-03.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-01-04. Available in OpenAccess from 2020-01-04.
|x pdfa
|u https://juser.fz-juelich.de/record/860443/files/PEG-fd-ACS-revised.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860443/files/acs.langmuir.8b03614.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860443
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130577
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159482
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130789
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21