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I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid,
randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of
contact, and the average interfacial separation, change with time. I present numerical results relevant
for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and
the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and
Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic
solid into the (roughness induced) interfacial gap between the solids. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972067]

I. INTRODUCTION

Tribology, the study of the interaction between solids in a
stationary or sliding contact,1–4 is a topic of great importance
in nature and in technology. In particular the tribology of soft
matter, such as rubbers or gels, has drawn increasing attention,
but is a very complex topic.5–13 One important class of soft
tribology problems refers to the tribology of biological matter
(i.e., material of living bodies). Thus, human body possesses
exquisite systems of lubrication that can withstand thousands
of work cycles per day without fatigue.8 The lubrication of
large articulating joints or the eyelid-cornea interface is critical
to the health and function of their constituent tissues. The artic-
ular cartilage of the knee (see Fig. 1(a)) is composed of a highly
structured network of collagen fibers, hyaluronin, and lubricin
produced by encased chondrocyte cells. Epithelial cells in the
eye produce a protective and lubricating polymer network, the
glycocalyx, which is composed of glycoprotein mucins, pro-
teoglycans, and glycolipids. It is believed that the weeping
lubrication at the surfaces of these nanoporous biopolymer
networks is an important mechanism for the low friction and
wear observed for these systems.

Here I study the contact between a porous fluid-filled
elastic solid (see Fig. 2) with a flat surface, and a rigid solid
with a surface having roughness on different length scales (see
Fig. 1(c)). I use the so-called biphasic theory13,14 to describe
the fluid filled porous solid. This theory assumes that the solid
is a micro (or nano) porous material with fluid filled and inter-
connected cavities and may be a useful model for the articular
cartilage or the smooth adhesive pads of some insects (e.g.,
crickets) and tree frogs.15,16

The constitutive equations in the biphasic model of the
tissue are equations for the solid (apparent) stress, the fluid
(apparent) stress, and a diffusive resistance of relative motion
depending on the (local) relative solid and fluid velocities.

a)URL: www.MultiscaleConsulting.com.

Under the action of compressive loading, the deformation of
the solid matrix and the flow of the interstitial fluid give rise
to the relative motion between the two phases. This model has
many applications and has been used to describe the articular
cartilage.13,14 However, no one has so far been able to solve
the equations in a realistic situation where two solids with
surface roughness on many length scales are squeezed into
contact. To study this problem, I combine the biphasic theory
with the Reynolds equation of fluid flow between solid walls17

and the Persson contact mechanics theory for randomly rough
surfaces.18,19 Using this theory, one can study processes like
the one illustrated in Fig. 3. In this paper, I consider only the
limiting case where the fluid in the porous solid flows rela-
tive to the elastic network orthogonal to the nominal contact
area.

The fluid squeeze-out from a poroelastic solid has been
studied in the past both theoretically and experimentally by
Mow and co-workers.13,14 In these studies, a free-draining,
rigid filter was squeezed against a cylindrical plug of the car-
tilage in a rigid confining chamber (see Fig. 1(b)). The load
or squeezing force was constant and the vertical displacement
of the filter was measured as a function of the squeezing time.
Good agreement was found between the theory and the exper-
imental data for the human cartilage. Note that the fluid flow
channels in the rigid filter were so large that the resistance
towards the fluid squeeze-out from the filter was negligible.
Thus the fluid pressure in the filter was nearly equal to the
external (atmospheric) pressure.

Here we consider a compact solid squeezed against the
poroelastic solid, and in this case the fluid is removed via
the open channels which occur at the interface as a result of
the surface roughness (see Fig. 1(c)). However, these chan-
nels are in general very narrow and a large resistance towards
fluid squeeze-out results from the viscous drag on the fluid
as it moves in the narrow interfacial channels. As a result,
the fluid at the interface will be pressurized and will carry a
part of the external load. We will describe the fluid flow at
the interface using the Reynolds equation with a source term
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FIG. 1. (a) An animal joint. (b) A rigid porous membrane (filter) squeezed against a cartilage. The pore channels in the filter are large enough so that there
is negligible resistance to fluid flow in the filter. In Refs. 13 and 14, the fluid squeeze-out from the cartilage was studies as a function of time and was used
to determine the cartilage effective elastic modulus and fluid diffusive resistance, and to test the applicability of the biphasic theory for the cartilage. (c) Fluid
squeeze-out studied in this paper. A rigid compact solid with a randomly rough surface is squeezed against a poroelastic solid. The fluid flow at the interface
between the solids in a complex system of narrow channels.

derived from the fluid squeeze-out from the poroelastic solid.
Although we focus on the case of a poroelastic solid with a flat
surface squeezed against a rigid randomly rough countersur-
face, the results are also valid for one rough poroelastic solid
squeezed against another rough poroelastic solid. In this case,
the relevant roughness is the combined roughness of the two
surfaces. In addition the fluid will enter (or leave) the interfacial
region from both of the poroelastic solids, i.e., the source term
in the Reynolds equation will have contributions from both
walls.

We emphasize that the multiscale nature of roughness has
a crucial influence on the fluid flow at interfaces. This is most
easily seen as follows:20,21 Consider first the elastic contact
between two solids with random roughness on many length
scales. We study the interface between the solids with increas-
ing magnification. At low magnification (say the naked eye),
we do not observe any surface roughness and it appears as if
complete contact occurs between the solids, i.e., A = A0, where
A0 is the nominal contact area. We now increase the magni-
fication and first observe only the long wavelength roughness
which will deform elastically under the applied load so that A is
only slightly smaller that A0. In this case, the contact area per-
colates, i.e., there is no open channel at the interface through
which the fluid could flow from one side to the other side. As
we increase the magnification further we observe shorter wave-
length roughness and the (apparent) contact area A decreases.

FIG. 2. Porous, fluid filled elastic material.

Exact numerical studies have shown22 that when the relative
contact area reach A/A0 ≈ 0.42 the non-contact area perco-
late and at this point the first open non-contact channel will
appear, which allow fluid flow at the interface from one side to
the other side (and would result, e.g., in the leakage of a seal).
As the load (or nominal contact pressure) increases, the mag-
nification where the non-contact area percolates will increase.
Thus, depending on the external load different parts of the sur-
face roughness spectrum will be important for the fluid flow.
The discussion above does not include the influence of the
fluid pressure on the contact mechanics (in the full theory it
is included in a mean-field approach) but nevertheless shows
that the multiscale roughness is of crucial importance for fluid
flow at interfaces.

The fluid squeeze-out between elastic solids with sur-
face roughness is a very complex topic. Here we use a theory
which combines an analytical contact mechanics approach (see
Refs. 18 and 19), with the Bruggeman effective medium the-
ory23 and the Reynolds equation24 for the fluid flow. For elastic
solids, this theory was tested in Ref. 22 where we compared
the fluid flow obtained using the analytical approach with the
exact numerical studies. Other aspects of the theory were tested
experimentally in Refs. 25 and 26 (fluid squeeze-out) and
Refs. 20 and 21 (leak-rate of seals).

FIG. 3. The pressure in the asperity contact region generates a fluid pressure
gradient in the porous material which forces the fluid to flow into empty or
low-pressure fluid filled regions at the interface. The fluid-filled regions will
carry a part of the external load and also acts as a lubricant at the onset of
slip.
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II. THEORY
A. Simple model of poroelastic solid

In this section, I consider the simplest model possible of
a porous elastic solid filled by a fluid, which is assumed to
percolate in the solid. Consider an elastic solid with a regular
array of cube-shaped cavities filled by a fluid, see Fig. 4(a).
We assume that small circular holes or pores occur in the solid
walls between the cavities. Thus when the solid deforms, fluid
can move between the different cavities, but in this process
the energy is dissipated into heat due to the viscosity of the
fluid. We assume the walls have the thickness d and the sur-
face area of a side of the cubic cavity is denoted by A1. The
“lattice constant” is denoted by B, and we define A0 = B2 and
A1 = (B− d)2. We consider a uniform compression in the nor-
mal direction (z-direction in Fig. 4(b)), and we assume that
the vertical elastic walls deform (compression or elongation
in the z-direction) without bending. We also assume that the
thickness of the elastic sheets does not change during the com-
pression, which corresponds to a Poisson ratio ν = 0 for the
elastic solid.

If the material in the elastic walls have the Young’s elastic
modulus E, we can define an effective modulus as follows.
If we compress a unit B × B by distance u so the strain
ε = u/B then the force to make the deformation will be
F = E(u/B)(A0−A1). We now define E∗ so that F = E∗(u/B)A0

or E∗ = E(1 − A1/A0).
Under the assumptions given above, the fluid volume

conservation gives

A1(u̇n+1 − u̇n) = κ(pn+1 − pn) + κ(pn−1 − pn), (1)

where u̇ = du/dt is the velocity of a node point as indicated
in Fig. 4(b). We have assumed that the flow of fluid from the
cavity n + 1 to the cavity n is proportional to the fluid pressure
difference (pn+1−pn) between the two cavities. The parameter
κ can be estimated by assuming the Poiseuille flow through N0

(in the figure N0 = 1) circular pores of radius r0 much smaller
than the thickness of the wall,27 κ ≈ N0(π/8)r4

0/(ηd), where η
is the fluid viscosity and d the thickness of the walls.

FIG. 4. (a) A simple model of a poroelastic solid. The material consists of
a regular array of cubic cavities filled with a fluid and surrounded by elastic
walls. The walls have small pores through which the fluid can flow. We con-
sider a case where the solid is uniformly compressed in the normal z-direction
and we assume that no side leakage of the fluid occurs. In this case, the problem
in (a) can be mapped on the 1D problem in (b).

Neglecting inertia effects, the force balance gives

A1(pn − pn−1) + k(un − un−1) + k(un − un+1) = 0, (2)

where k ≈ Ed, where d is the thickness of the wall (or plate).
Assume now that un and pn change slowly with n and let us
denote z = nB. We consider pn as a function of z denoted by
p(z). Expanding

pn+1 ≈ pn +
∂p
∂n
= p(z) + B

∂p
∂z

(z)

and similarly for un we get from (1),

A1B
∂2u
∂z∂t

= κB2 ∂
2p

∂z2
, (3)

and from (2),

A1B
∂p
∂z
= kB2 ∂

2u

∂z2
. (4)

We can write (3) as

c
∂2u
∂z∂t

=
∂2p

∂z2
,

where c = A1/(κB) = (8/π)(η/N0)(d/B)(A1/r4
0 ). Integrating

this equation with respect to z gives

c
∂u
∂t
=
∂p
∂z
+ f (t),

where f (t) is a function of time only. We will show below that
for z = L both u and ∂p/∂z vanish, and it follows that f (t) = 0.
Thus

c
∂u
∂t
=
∂p
∂z

. (5)

From (4), we get
∂p
∂z
= K

∂2u

∂z2
, (6)

where K = kB/A1. Using that k = Ed, we can also write
K = EBd/A1 = [E∗/(1 − A1/A0)](Bd/A1) = µE∗, where µ
is a geometrical factor. Combining (5) and (6) gives

∂u
∂t
= D

∂2u

∂z2
, (7)

which is the standard diffusion equation with the diffusivity
D = K /c.

To solve the equations above, we need boundary condi-
tions on the surfaces z = 0 and z = L. For z = L = (N + 1)B, we
have u(L) = 0 and the volume conservation condition becomes

A1(u̇N − u̇N−1) = κ(pN−1 − pN )

or

A1B
∂2u
∂z∂t

= −κB
∂p
∂z

or

Bc
∂2u
∂z∂t

(L) = −
∂p
∂z

(L).

As B→ 0, this condition reduces to

∂p
∂z

(L) = 0.

Let us now consider the boundary condition at z = 0. When
applied to n = 1 the volume conservation takes the form

A1(u̇1 − u̇0) = κ(p1 − p0) + κ(pfluid − p0),
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giving for z = 0,

A1B
∂2u
∂z∂t

= κB
∂p
∂z
+ κ(pfluid − p)

or

cB2 ∂
2u

∂z∂t
= B

∂p
∂z
+ (pfluid − p).

In the limit B→ 0, this condition reduces to

p(0) = pfluid. (8)

Let us now study the force balance condition. We assume
that the force F act on the elastic solid at z = 0. Thus the
nominal solid contact pressure psolid = F/A0. In this case, (2)
takes the form

A1(p0 − pfluid) − k(u1 − u0) − F = 0

or for z = 0

A1(p − pfluid) − kB
∂u
∂z
− F = 0.

Since p(0) = pfluid, we obtain

−kB
∂u
∂z
= F.

Dividing with A0 = B2 gives

− K
A1

A0

∂u
∂z

(0) = psolid. (9)

In the equations above, p is the pressure in the fluid but it
is often more convenient to use the nominal fluid pressure p∗

defined so that p∗A0 = pA1. In this case, K in (6) is replaced
by E∗(1 − A1/A0)(d/B) = E∗(A0 − A1)d/V0, where V0 = B3.

The boundary conditions derived above have a very sim-
ple interpretation within the continuum mechanical approach.
Thus, u(L) = 0 is trivial because at z = L the bottom surface of
the poroelastic solid is attached to a rigid wall. The condition
∂p/∂z = 0 for z = L follows from the fact that the fluid current
J⊥(z) is proportional to the gradient of the pressure (Darcy’s
law), ∂p/∂z, and since J⊥(L) = 0, it follows that ∂p/∂z = 0
for z = L.

Consider now the boundary conditions for z = 0. If the
fluid pressure varies continuously in the vicinity of the surface
z = 0, then p(0) = pfluid. Finally, the pressure psolid acting on the
elastic solid is given by the normal components of the stress
tensor which is proportional to ∂u/∂z in the present case. This
gives the last boundary condition.

It is possible to define solid and fluid velocities. The solid
velocity vsolid = ∂u/∂t. The fluid velocity can be obtained by
the following argument. Relative to the solid walls of cell n
the fluid move with the (average) velocity

1
A1
κ(pn − pn+1) ≈ −

κB
A1

∂p
∂z

.

The solid wall move relative to a fixed external coordinate
system with the velocity ∂u/∂t. Hence the fluid velocity

vfluid =
∂u
∂t
−
κB
A1

∂p
∂z

. (10)

Since κB/A1 = 1/c, we see from (5) that in the present case the
fluid velocity vanishes. In Appendix A, we show how the equa-
tions derived above can be generalized to obtain the standard
equations of poroelastic solids.

B. Solution of the basic equations for arbitrary
(time-dependent) fluid and solid contact pressures

Let us define the Fourier transform

u(ω) =
1

2π

∫
dt u(t)eiωt (11)

and similarly for p(ω). After the Fourier transformation of the
time-dependency (5) and (7) gives

−iωcu =
∂p
∂z

, (12)

−iωu = D
∂2u

∂z2
. (13)

If we introduce

γ =

(
−

iω
D

)1/2

= (1 − i)
(
ω

2D

)1/2
, (14)

then we can write the solution to (13) as

u = u1(ω)eγz + u2(ω)e−γz.

The boundary condition u = 0 for z = L gives

u2 = −u1e2γL,

so that
u = u1(ω)

(
eγz − eγ(2L−z)

)
.

Using (12), we get

p = −
iωu1c
γ

(
eγz + eγ(2L−z)

)
+ g(ω).

Note that the boundary condition ∂p/∂z = 0 for z = L is
obeyed.

The boundary condition (9) gives

u1 = −
A0

KA1

psolid

γ
(
1 + e2γL) ,

and hence

u(z,ω) = −
A0

A1

psolid

Kγ
eγz − eγ(2L−z)

1 + e2γL
. (15)

Next, the boundary condition p = pfluid(ω) for z = 0 gives

g = pfluid −
A0

A1
psolid.

Thus

p = pfluid +
A0

A1
psolid

(
1 −

eγz + eγ(2L−z)

1 + e2γL

)
. (16)

The flow of fluid from the poroelastic solid to the outside is
given by the flow current

J⊥ = κ
B
A0

∂p
∂z
= −

B
A1

psolidκγ
1 − eγ2L

1 + e2γL
. (17)

Here we are interested in the fluid squeeze-out between a
poroelastic solid and a rigid solid with a randomly rough sur-
face. When the poroelastic solid is squeezed against another
solid, the fluid current J⊥(x, t) is a source field in the effective
Reynolds equations for the fluid flow. That is, it enters in the
continuity equation

∂u
∂t
+ ∇ · J = J⊥. (18)

Here u(x, t) is the interfacial separation and J(x, t) the 2D
flow current parallel to the interface, where x = (x, y) denote
the lateral position vector at the interface.

Let us now consider some limiting cases.
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1. Time-dependent fluid pressure pfluid(t) outside
the poroelastic solid

In this case psolid = 0, and from (16) it follows that the
fluid pressure p(z, t) = pfluid(t) is the same everywhere. This is
of course the expected result for an incompressible fluid.

2. Oscillating (in time) solid contact pressure while
vanishing fluid pressure outside the solid

Assume psolid(t) = p0 + p1cos(ω0t). In this case,

psolid(ω) = p0δ(ω) + p1
1
2

(δ(ω − ω0) + δ(ω + ω0)) ,

and from (15),

u(z, t) =
A0

A1

p0

K
(L − z),

−
A0

A1

p1

K
Re

[
eγ0z − eγ0(2L−z)

γ0(1 + e2γ0L)
eiω0t

]
, (19)

where

γ0 =

(
−

iω0

D

)1/2

.

The first term in (19) is just the static elastic deformation in
response to the constant pressure p0.

The fluid pressure is obtained from (16) with pfluid(t) = 0.
We get

p =
A0

A1
p1Re

[(
1 −

eγ0z + eγ0(2L−z)

1 + e2γ0L

)
eiω0t

]
.

Let us consider the limiting case of ω0 << D/L2. In this
case,

u(z, t) =
A0

A1

1
K

(L − z)
[
p0 + p1cos(ω0t)

]
and

p(z, t) = −
A0

A1

p1

2D
z(2L − z)ω0sin(ω0t).

Note that the solid deformation velocity field

v(z, t) =
du
dt

(z, t) = −
A0

A1

p1

K
(L − z)ω0sin(ω0t).

Thus, the fluid pressure has the same time dependency as the
solid velocity, which is expected as the fluid is dragged by
the frictional coupling to the solid walls. Note also that u(z, t)
vanishes for z = L as expected and takes its largest value at the
surface z = 0. The fluid pressure instead takes its largest value
at the wall z = L as expected because the drag force from the
solid walls add up monotonically as we move from the outer
surface z = 0 (where the fluid pressure is assumed to vanish)
to the wall z = L.

If we define the velocity

v0 =
A0

A1

p1Lω0

2K
,

we can write

v(z, t) = −v02
(
1 −

z
L

)
sin(ω0t) (20)

and

p(z, t) = −v0Lc
z
L

(
2 −

z
L

)
sin(ω0t).

Note that p(L, t) = −cLv0 sin(ω0t). This equation can be
obtained directly from (5) by integrating z from 0 to L,

c
∫ L

0
dz v = p(L, t)

or
p(L, t) = cL〈v〉,

where 〈v〉 is the average velocity which according to (20)
is −v0 sin(ω0t) in the present case. In Appendixes B and C,
we consider the problem discussed above when psolid(t) has
arbitrary dependency on time.

III. CONTACT MECHANICS FOR RANDOMLY
ROUGH SURFACES

Here we consider the contact between a poroelastic solid
with a nominal flat surface and a rigid solid with random rough-
ness. The poroelastic solid is assumed to have the thickness L.
We will consider the limit where the time-variation is so slow
that ω << D/L2, corresponding to long squeeze-out times. In
this case, (17) reduces to

J⊥(ω) = −
L
K

iωpsolid(ω)

or

J⊥(t) =
L
K

dpsolid

dt
(t). (21)

Using (15), we can write the (low frequency) elastic strain

ε =
u(0, t)

L
=

1
E

p(t),

where the (low frequency) elastic modulus

E = (A1/A0)K . (22)

For human joint, E ≈ 1 MPa.
The average interfacial separation s satisfies25,26,28,29

ds
dt
= −

s3φp(s)

ηw2
pfluid(t) + J⊥(t). (23)

If p0 is the nominal contact pressure then

pfluid = p0 − psolid. (24)

Here we will use the asymptotic relation35

psolid = βE∗exp

(
−

s
s0

)
, (25)

where s0 = hrms/α, where α ≈ 0.5 and where hrms is the root-
mean-square roughness. Let us measure the pressure in units
of p0, separation in units of hrms and time in units of

τ =
ηw2s0

h3
rmsp0

=
ηw2

αh2
rmsp0

. (26)

We get

ds
dt
= −α−1φp(s)s3(1 − psolid) +

L
hrms

p0

E
dpsolid

dt
. (27)

Using (25), we can also write this as

ds
dt
= −

α−1φp(s)s3(1 − psolid)

1 + α(L/hrms)(p0/E)psolid
.
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FIG. 5. The surface roughness power spectrum C(q) as a function of the
wavenumber q (log-log scale).

Let us now present some numerical results. We consider
the contact between a rigid rectangular block of thickness
L = 0.2 cm, with a flat surface and with the width w = 2 cm in
the fluid flow direction, squeezed against an elastic or poroe-
lastic solid with a randomly rough surface with the surface
roughness power spectrum C(q) shown in Fig. 5. The sur-
face is self affine fractal with the root-mean-square roughness
amplitude 10 µm and the fractal dimension Df = 3−H = 2.2.
The fluid flow at the interface is studied using the Reynolds
equation with the additional source term (21). In the fluid flow
equation, enter the fluid pressure flow factor φp, which depends
on C(q), which we calculate using the Bruggeman effective
medium theory combined with the Persson contact mechanics
theory, as described in earlier publications.28 In Fig. 6, we show
the pressure flow factor φp as a function of the average inter-
facial separation u (in units of the rms-roughness amplitude
hrms = 10 µm).

Let us now consider the fluid squeeze-out. At time t = 0,
we assume the average surface separation u = 10−4 m. Fig. 7
shows the average interfacial separation as a function of time
(log-log scale). We have assumed that a rigid rectangular strip
(width w = 2 cm) is squeezed in a fluid (viscosity η = 1 Pa s)
against a solid with the surface roughness power spectrum
shown in Fig. 5. The squeezing pressure is applied at t = 0 and
increases linearly with time during the first 0.01 s to its final
value p = 1 MPa. The red and green lines are for an elastic
solid with the effective elastic modulus E = 1 MPa, and the
pink lines are for a poroelastic solid where the elastic network

FIG. 6. The pressure flow factor φp as a function of the average interfacial
separation u (in units of the rms-roughness amplitude hrms = 10 µm).

FIG. 7. The average interfacial separation as a function of time (log-log
scale). For a rigid rectangular strip (width w = 2 cm) squeezed in a fluid
(viscosity η = 1 Pa s) against a solid with the surface roughness power spec-
trum shown in Fig. 5. The squeezing pressure is applied at t = 0 and increases
linearly with time during the first 0.01 s to its final value p = 1 MPa. The red
and green lines are for an elastic solid with the elastic modulus E = 1 MPa,
and the pink line is for a poroelastic solid where the elastic network has the
modulus E = 1 MPa. The green line is obtained with the pressure flow factor
φp = 1, while the red and pink lines are with the pressure flow factor shown in
Fig. 6. The blue line is for rigid solids with flat surfaces (no surface roughness).

has the modulus E = 1 MPa. The green line is obtained with
the pressure flow factor φp = 1, while the red and pink lines
are with the pressure flow factor shown in Fig. 6. The blue line
is for a rigid and flat substrate.

FIG. 8. The (a) solid contact pressure psolid and (b) the area of contact A (in
units of the nominal contact area A0), as a function of the logarithm of time t.
For a rigid rectangular strip (width w = 2 cm) squeezed in a fluid (viscosity
η = 1 Pa s) against a solid with the surface roughness power spectrum shown
in Fig. 5. The squeezing pressure is applied at t = 0 and increases linearly
with time during the first 0.01 s to its final value p = 1 MPa. The red and
green lines are for an elastic solid with the elastic modulus E = 1 MPa, and
the pink lines are for a poroelastic solid where the elastic network has the
modulus E = 1 MPa. The green line is obtained with the pressure flow factor
φp = 1, while the red and pink lines are with the pressure flow factor shown in
Fig. 6.
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FIG. 9. The quantity 〈ω〉L2/D as a function of time (log-log scale), where
the effective frequency 〈ω〉 is calculated from the time variation of pcont(t)
(red line) or u(t) (green line) using 〈ω〉 = p′cont(t)/pcont(t) and u′(t)/u(t),
respectively.

Fig. 8 shows (a) the solid contact pressure psolid and (b)
the area of contact A (in units of the nominal contact area A0),
as a function of the logarithm of time t. The red and green
lines are again for an elastic solid with the elastic modulus
E = 1 MPa, and the pink lines are for a poroelastic solid where
the elastic network has the modulus E = 1 MPa. The green
line is obtained with the pressure flow factor φp = 1, while the
red and pink lines are with the pressure flow factor shown in
Fig. 6.

For the human cartilage, experiments have shown that the
diffusivity D ≈ 4 × 10−9 m2/s. Thus we get the characteristic
time (relaxation time) τ0 = L2/D ≈ 1000 s. Because of the
assumption (21), the numerical results presented above are
only valid for times t > τ0, i.e., for t larger than about ≈103 s.
Thus, only when the time variation of pcont(t) or u(t) becomes
slower than τ0, the approximation (21) holds. As shown in
Fig. 9, this is obeyed when t > τ0.

IV. DISCUSSION

The study above shows that the fluid squeeze-out occurs
over a very long time period. This is partly due to the large
width of the contact region (w = 2 cm) but mainly due to

trapped islands of pressurized fluid which carry a part of
the external load. Trapped islands of the fluid can occur at
any stage in the squeeze-out but when the (relative) con-
tact area A/A0 ≈ 0.42 the contact area percolates,22 and at
this point in time most of the liquid at the interface will be
trapped.

Fig. 8 shows that some asperity contact occurs already
after a short contact time, e.g., after 10 min the contact area
A/A0 ≈ 0.1 for the elastic solid and ≈0.07 for the poroelastc
solid, although the latter result is inaccurate because longer
contact time is necessary for the asymptotic result (21) to hold
accurately. Anyway, the numerical results indicate that the area
of contact is only weakly affected by poroelasticity and suggest
similar break-loose friction force in both cases, assuming that
the break-loose friction force is proportional to the area of
contact.

Fig. 8 shows that the (average) pressure in the asperity con-
tact regions, given by psolidA0/A, is only of order 1 MPa. The
cartilage consists of polar molecules with charged groups and
counter-ions. For such systems, experiments have shown for
contact pressures up to ∼1 MPa the osmotic pressure, and for
higher contact pressures (up to ∼10 MPa, or more) hydration
lubrication,30,31 (the hypothesis that hydration shells surround-
ing charges act as lubrication elements in boundary layers)
could be important and result in extremely low friction. Thus,
recent studies suggest that the very low friction observed for
the synovial joint, for contact pressures up to ∼10 MPa, result
from highly hydrated phosphocholine groups via the hydration
lubrication mechanism.31,32

Here I would like to suggest another way that the poroe-
lasticity could reduce friction and wear. It has recently been
found that elastohydrodynamic effects can have a huge effect
on the sliding friction for soft elastic solids. Thus, in Ref. 33, it
was observed that when soft rubber blocks are slid with a con-
stant driving force on a lubricated substrate, the motion stops
within a few seconds and, if the driving force is big enough,
the lubricant is completely removed from the interface. For
a block made from an elastically hard solid like Poly(methyl
methacrylate) (PMMA or plexiglass), we instead observed that

FIG. 10. During squeezing the bottom surface of the rub-
ber block deform as in (a). During sliding the surface
separation changes as indicated in (b)–(d). Reproduced
with permission from J. Chem. Phys. 144, 124903 (2016).
Copyright 2016 AIP Publishing LLC.
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the speed of the block (and the fluid film thickness) increased
with time.

In Ref. 33, we proposed the following explanation for
the observations. When a rigid body with a flat surface is
squeezed against a flat rigid countersurface in a fluid, because
of the fluid viscosity a pressure will develop in the fluid,
which is maximal in the center of the contact region (see,
e.g., Refs. 1 and 2). For elastic solids, the fluid pressure will
deform the solid such that the separation between the solids
will have a maximum at the center of the contact region,
see Fig. 10(a). These deformations of the bottom surface of
the block increases when the elastic modulus of the solids
decreases. With the nominal contact pressures used in Ref. 33,
the effect is large for the rubber materials but negligible for the
PMMA.

If we now start to slide, the fluid pressure will decrease
at the inlet side because of the increasing surface separa-
tion with increasing x, while it will increase on the exit side
due to the decreasing surface separation with increasing x.
Thus, on the rubber surface will act a fluid pressure which
will deform the rubber as indicated by the pink arrows in
(b). Hence, during sliding the surfaces will be deformed as
in (c), which will strongly reduce the inflow of the fluid at
the inlet side and make it easy for the fluid to disappear on
the exit side. As a result, the separation between the sur-
faces will rapidly decrease, and at the stop of sliding, the
surface separation may be as in (d). This explains why for
the silicon rubber block, sliding just ∼3 times the width of
the block in the sliding direction results in a nearly dry con-
tact area. We refer to the process above as the dynamic scrape
mechanism.

For a poroelastic solid, the dynamical scape process (and
cavitation in negative pressure regions, which could have a
detrimental influence on the wear) will be suppressed for the
reason illustrated in Fig. 11. Thus, the negative fluid pressure
at the leading edge of the confined fluid region will result in a
flow of fluid from the poroelastic solid into the space between
the solids, which will reduce the tendency to close the gap at
the front edge of the confined fluid region. This will reduce
the friction and wear, and we propose that this may be the
most important reason for why human and animal cartilages
are porous, fluid filled, structures.

FIG. 11. For a poroelastic solid, the negative fluid pressure at the leading
edge of the confined fluid will result in a flow of fluid from the poroelastic
solid into the space between the solids, which will reduce the tendency for the
gap between the solids to close the front edge of contact. This will reduce the
friction and wear.

V. SUMMARY AND CONCLUSION

In Refs. 13 and 14, Mow and coworkers reported on fun-
damental work for some simple poroelastic contact mechanics
configurations, such as fluid squeeze-out through a rigid filter
or a moving parabolic load. The present contribution con-
sider the influence of the surface roughness on many length
scales on the fluid flow at the interface between a poroe-
lastic solid and a rigid randomly rough countersurface. This
is a complex topic and is studied for the first time in this
paper using an accurate treatment of the interfacial fluid
flow.

I have presented a simple model of a fluid filled poroelastic
solid and considered the contact mechanics (fluid squeeze-out)
between a poroelastic solid and a hard solid with a randomly
rough surface. I have shown that for the poroelastic solid the
fluid squeeze-out from the interface is slower than for the cor-
responding elastic solid, but the effect is not so large, and is
unlikely to be the fundamental reason for the low friction of
the human joint. I have also discussed the role of poroelasticity
on the break-loose friction force and suggested a mechanism
by which the break-lose friction force is reduced for poroelas-
tic solids. The low friction observed for the human joints may
result from osmotic pressure and, as recently proposed, from
hydration lubrication.31,32

The human cartilage is more complex than the very sim-
ple model used above. Thus, for example, it has properties
which depend on the distance z from the surface. The contact
mechanics model we used can also be applied to such layered
materials.34 Another complication result from the fact that the
cartilage is made from molecules which are charged when sur-
rounded by water. This result in osmotic pressure effects as the
water is squeezed out from the material. However, more severe
is the assumption made above about the fluid flow (we only
allowed for the fluid flow in the z-direction) and the consid-
eration of the long-time response of the poroelastic solid. In
a future publication, I hope to present a more general study
where both these constrains are removed.
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APPENDIX A: CONNECTION TO THE STANDARD
MODEL OF POROELASTIC SOLIDS

The standard equations for the mechanical properties of
the fluid filled poroelastic solid, with isotropic properties, can
be easily obtained from the equations derived in Sec. II A. Thus
for an isotropic elastic solid symmetry arguments demand that
(6) must take the form

−∇p + K1∇∇ · u + K2∇
2u = 0, (A1)
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and (5) takes the form

c
∂u
∂t
= ∇p.

Since in the present case the fluid velocity vanishes, we can
also write this equation as

c (vsolid − vfluid) = ∇p. (A2)

This equation can be interpreted as follows: the driving force
for fluid flow, the∇p-term, is balanced by a frictional drag force
between the fluid and the solid (the left hand side in (A2)),
which depends on the relative velocity of the two components.
Note, however, that the microscopic origin of the friction in
the model studied above is not (mainly) the friction against
the solid walls inside the cavities, but rather due to the energy
dissipation, due to the viscosity of the fluid, as it is squeezed
through the narrow pore channels.

The coefficient c in (A2) can be measured in a simple
fluid-flow experiment: a rectangular disk (thickness H) of the
poroelastic material is surrounded by the fluid on the upper and
lower side with the pressures pa and pb, respectively. This will
result in fluid flow (leakage) from the high pressure side to the
low pressure side and (10) takes the form cυfluid = (pa � pb)/H
(where we assumed pa > pb), and by measuring the flow veloc-
ity υfluid, one can determine c which is usually denoted as the
coefficient of the diffusive resistance. Note, however, that υfluid

is the (average) fluid flow inside the material which differ from
the fluid flow velocity v∗fluid measured outside the poroelastic
solid: volume conservation requires that v∗fluidA0 = vfluidA1,
where A0 is the sample cross section area orthogonal to the
fluid flow direction and A1/A the fraction of the cross section
area A0 which is occupied by the fluid. The ratio A1/A0 can be
determined by studying a cross section area of the material.

In addition to the equations above, if the fluid and solid
material can be considered as incompressible, the equation of
continuity takes the form

∇ · (αsolidvsolid + αfluidvfluid) = 0, (A3)

where αsolid and αfluid are the fraction of the material occupied
by the solid and fluid components, respectively.

APPENDIX B: FLUID FLOW CURRENT J⊥(t)

From (17), we get

J⊥(t) = −κ
B
A1

∫
dω e−iωtpsolid(ω)γ(ω)

1 − eγ(ω)2L

1 + eγ(ω)2L
. (B1)

Substituting

psolid(ω) =
1

2π

∫
dt ′ psolid(t ′)eiωt′

in (B1) gives

J⊥(t) = −κ
B
A1

∫
dt ′ G(t − t ′)psolid(t ′), (B2)

where

G(t) =
1

2π

∫
dωe−iωtγ(ω)

1 − eγ(ω)2L

1 + eγ(ω)2L
, (B3)

where

γ =

(
−

iω
D

)1/2

.

The integral (B3) can be performed using the complex inte-
gration. Note that

f (ω) = 1 + eγ(ω)2L = 0, (B4)

if
γ(ω)2L = iπ(1 + 2n),

where n is an integer. Thus the solution to (B4) is ω = ωn,
where

ωn = −iD
(
π

2L

)2
(1 + 2n)2 = −iαn, (B5)

where n = 0, 1, . . .. Note that Imωn < 0, so all the polesω = ωn

occur in the lower ω half plane. It follows that for t < 0 the
function G(t) = 0. When t > 0, we close the integral (B3)
in the lower ω half plane. It is easy to show that there is no
contribution to the integral from the semi-circle at infinite |ω |.
Thus the integral will be equal to the sum over the poles ω =
ωn, and expanding the denominator f (ω) = f ′(ωn)(ω − ωn),
we get

G(t) =
1

2π

∫
dω e−iωt

∑
n

2γ(ωn)
f ′(ωn)(ω − ωn)

= θ(t)
∑

n

e−αnt −2iγ(ωn)
f ′(ωn)

, (B6)

where θ(t) = 1 for t > 0 and = 0 for t < 0. Next using that

f ′(ωn) = −γ′(ωn)2L = −γ(ωn)(L/ωn), (B7)

we get from (B6) and (B7),

G(t) = θ(t)
∑

n

e−αnt −2iγ(ωn)
−γ(ωn)(L/ωn)

=
π2D

2L3
θ(t)

∑
n

e−αnt(1 + 2n)2. (B8)

Thus we can write

J⊥(t) = −κ
B
A1

π2D

2L3

∫ t

−∞

dt ′ H(t − t ′)psolid(t ′), (B9)

where
H(t) =

∑
n

e−αnt(1 + 2n)2. (B10)

Note that in most applications, one must assume that the con-
tact pressure is turned on at some time which we denote as
t = 0. In this case psolid = 0 for t < 0, so that

J⊥(t) = −κ
B
A1

π2D

2L3

∫ t

0
dt ′ H(t − t ′)psolid(t ′). (B11)

For long times, psolid(t) varies slowly with time compared
to the function H(t), and we can write

psolid(t ′) = psolid(t) + p′solid(t)(t ′ − t) + · · ·.

We get

J⊥(t) = κ
B
A1

π2D

2L3
[H0psolid(t) + H1p′solid(t) + · · · ],

where

H0 = −

∫ t

0
dt ′ H(t − t ′) = −

∫ t

0
dt H(t),

H1 =

∫ t

0
dt ′ H(t − t ′)(t − t ′) =

∫ t

0
dt H(t)t.
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Note that

H1 =
∑

n

(1 − e−αnt)
(1 + 2n)2

α2
n

=

(
2L
π

)4 1

D2

∑
n

(1 − e−αnt)
1

(1 + 2n)2
. (B12)

Here we are interested in such long times that Dt/L2 >> 1
in which case the exp(−αnt) term in (B12) can be neglected.
Thus we get

J⊥(t) = κ
B
A1

8L

Dπ2

∑
n

1

(1 + 2n)2
p′solid(t) + · · ·.

Using that D = K/c = K κB/A1 gives

J⊥(t) =
8L

π2K

∑
n

1

(1 + 2n)2
p′solid(t) + · · ·.

Next using that ∑
n

1

(1 + 2n)2
=
π2

8
, (B13)

we get to leading order for long time

J⊥(t) =
L
K

p′solid(t),

which agrees with (21). Note that the derivation of this
result is much simpler in the frequency-space than in the
time-space.

APPENDIX C: ELASTIC SURFACE DEFORMATION u(t)

The elastic deformation field u(z,ω) is given by (15),

u(z,ω) = −
A0

A1

psolid

Kγ
eγz − eγ(2L−z)

1 + eγ2L
.

The surface deformation u(ω) = u(0,ω) is given by

u(ω) = −
A0

A1

psolid

Kγ
1 − eγ2L

1 + eγ2L
.

Let us first consider the case when psolid(t) = 0 for t < 0 and
psolid(t) = p0

solid constant for t > 0. In this case,

psolid(ω) =
p0

solid

2π(ε − iω)
,

where ε = 0+ is an infinitesimal small positive number. Thus
we get

u(t) =
∫

dω u(ω)e−iωt

=
A0

A1

p0
solid

K
1

2πi

∫
dω

1
(ω + iε)γ(ω)

1 − eγ(ω)2L

1 + eγ(ω)2L
e−iωt .

Consider now the integral

I =
1

2πi

∫
dω

1
(ω + iε)γ(ω)

1 − eγ(ω)2L

1 + eγ(ω)2L
e−iωt .

The integrand has poles in the lower ω-half planes at ω = −iε
and at ω = ωn = −iαn (see Appendix B). Since

1
γ(ω)

1 − eγ(ω)2L

1 + eγ(ω)2L
→ −L,

as ω → 0, the contribution to the integral I from the pole
ω = −iε will be just L. The contribution from the poles
ω = ωn = −iαn can be calculated just as in Appendix B.
Thus we get

I = L −
∑

n

2D
Lαn

e−αnt = L *
,
1 −

∑
n

2D

L2αn
e−αnt+

-
or

I = L *
,
1 −

8

π2

∑
n

1

(1 + 2n)2
e−αnt+

-
.

Thus we get

u(t) = L
A0

A1

p0
solid

K
*
,
1 −

8

π2

∑
n

1

(1 + 2n)2
e−αnt+

-
, (C1)

a result already obtained by Mow and coworkers,13,14 and
found to be in good agreement with confined compression
data for the human cartilage. Here a free-draining, rigid filter,
was squeezed against a cylindrical plug of the cartilage in a
rigid confining chamber. The load or squeezing force was con-
stant and the vertical displacement of the filter measured as a
function of the squeezing time.

Let us now consider the general case where psolid(t)
depends on time in an arbitrary way. Let us write

u(ω) = F(ω)psolid(ω),

where

F(ω) = −
A0

A1

1
Kγ

1 − eγ2L

1 + eγ2L
.

Thus we get

u(t) =
∫

dω F(ω)psolid(ω)e−iωt

=

∫
dt ′ psolid(t ′)

1
2π

∫
dω F(ω)e−iω(t−t′). (C2)

Now consider the integral

J = −
1

2π

∫
dω

1
γ(ω)

1 − eγ(ω)2L

1 + eγ(ω)2L
e−iωt .

Using the results of Appendix B, we obtain

J =
2D
L
θ(t)

∑
n

e−αnt ,

where θ(t) = 1 for t > 0 and = 0 for t < 0. Combining this
with (C2) gives

u(t) =
A0

A1

2D
L

∫ t

−∞

dt ′ psolid(t ′)
∑

n

e−αn(t−t′).

If psolid(t) = 0 for t < 0 and a constant p0
solid for t > 0, we get

u(t) = L
A0

A1

p0
solid

K
8

π2

∑
n

1

(2n + 1)2

(
1 − e−αnt

)
.

Using (B13), this gives

u(t) = L
A0

A1

p0
solid

K
*
,
1 −

8

π2

∑
n

1

(2n + 1)2
e−αnt+

-
,

which agrees with (C1).



234703-11 B. N. J. Persson J. Chem. Phys. 145, 234703 (2016)

1B. N. J. Persson, Sliding Friction: Physical Principles and Applications
(Springer, Heidelberg, 2000).

2E. Gnecco and E. Meyer, Elements of Friction Theory and Nanotribology
(Cambridge University Press, 2015).

3A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, and E. Tosatti, Rev. Mod.
Phys. 85, 529 (2013).

4J. Krim, Sci. Am. 275, 74 (1996).
5P. S. Walker, D. Dowson, M. D. Longfield, and V. Wright, Ann. Rheum.
Dis. 27, 512 (1968).

6S. Lee and N. D. Spencer, Science 319, 575 (2008).
7J. Ahmed, H. Guo, T. Yamamoto, T. Kurokawa, M. Takahata, T. Nakajima,
and J. P. Gong, Macromolecules 47, 3101 (2014).

8A. C. Dunn, W. G. Sawyer, and T. E. Angelini, Tribol. Lett. 54, 59 (2014).
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