000860449 001__ 860449 000860449 005__ 20210130000514.0 000860449 0247_ $$2doi$$a10.1007/s11249-016-0665-z 000860449 0247_ $$2ISSN$$a1023-8883 000860449 0247_ $$2ISSN$$a1573-2711 000860449 0247_ $$2Handle$$a2128/21533 000860449 0247_ $$2WOS$$aWOS:000380340700002 000860449 0247_ $$2altmetric$$aaltmetric:6479062 000860449 037__ $$aFZJ-2019-01203 000860449 082__ $$a670 000860449 1001_ $$0P:(DE-HGF)0$$aLahayne, Olaf$$b0 000860449 245__ $$aRubber Friction on Ice: Experiments and Modeling 000860449 260__ $$aDordrecht$$bSpringer Science Business Media B.V.$$c2016 000860449 3367_ $$2DRIVER$$aarticle 000860449 3367_ $$2DataCite$$aOutput Types/Journal article 000860449 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549282459_12298 000860449 3367_ $$2BibTeX$$aARTICLE 000860449 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000860449 3367_ $$00$$2EndNote$$aJournal Article 000860449 520__ $$aRubber friction on ice is studied both experimentally and theoretically. The friction tests involve three different rubber tread compounds and four ice surfaces exhibiting different roughness characteristics. Tests are carried out at four different ambient air temperatures ranging from −5 to −13∘C, under three different nominal pressures ranging from 0.15 to 0.45MPa, and at the sliding speed 0.65 m/s. The viscoelastic properties of all the rubber compounds are characterized using dynamic mechanical analysis. The surface topography of all ice surfaces is measured optically. This provides access to standard roughness quantities and to the surface roughness power spectra. As for modeling, we consider two important contributions to rubber friction on ice: (1) a contribution from the viscoelasticity of the rubber activated by ice asperities scratching the rubber surface and (2) an adhesive contribution from shearing the area of real contact between rubber and ice. At first, a macroscopic empirical formula for the friction coefficient is fitted to our test results, yielding a satisfactory correlation. In order to get insight into microscopic features of rubber friction on ice, we also apply the Persson rubber friction and contact mechanics theory. We discuss the role of temperature-dependent plastic smoothing of the ice surfaces and of frictional heating-induced formation of a meltwater film between rubber and ice. The elaborate model exhibits very satisfactory predictive capabilities. The study shows the importance of combining advanced testing and state-of-the-art modeling regarding rubber friction on ice. 000860449 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0 000860449 588__ $$aDataset connected to CrossRef 000860449 7001_ $$0P:(DE-HGF)0$$aPichler, Bernhard$$b1$$eCorresponding author 000860449 7001_ $$0P:(DE-HGF)0$$aReihsner, Roland$$b2 000860449 7001_ $$0P:(DE-HGF)0$$aEberhardsteiner, Josef$$b3 000860449 7001_ $$0P:(DE-HGF)0$$aSuh, Jongbeom$$b4 000860449 7001_ $$0P:(DE-HGF)0$$aKim, Dongsub$$b5 000860449 7001_ $$0P:(DE-HGF)0$$aNam, Seungkuk$$b6 000860449 7001_ $$0P:(DE-HGF)0$$aPaek, Hanseung$$b7 000860449 7001_ $$0P:(DE-Juel1)130804$$aLorenz, Boris$$b8 000860449 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b9$$ufzj 000860449 773__ $$0PERI:(DE-600)2015908-0$$a10.1007/s11249-016-0665-z$$gVol. 62, no. 2, p. 17$$n2$$p17$$tTribology letters$$v62$$x1573-2711$$y2016 000860449 8564_ $$uhttps://juser.fz-juelich.de/record/860449/files/Lahayne2016_Article_RubberFrictionOnIceExperiments.pdf$$yOpenAccess 000860449 8564_ $$uhttps://juser.fz-juelich.de/record/860449/files/Lahayne2016_Article_RubberFrictionOnIceExperiments.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000860449 909CO $$ooai:juser.fz-juelich.de:860449$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000860449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b9$$kFZJ 000860449 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000860449 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000860449 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000860449 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000860449 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000860449 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRIBOL LETT : 2017 000860449 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000860449 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000860449 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000860449 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000860449 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000860449 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000860449 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000860449 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000860449 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000860449 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000860449 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000860449 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000860449 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000860449 980__ $$ajournal 000860449 980__ $$aVDB 000860449 980__ $$aUNRESTRICTED 000860449 980__ $$aI:(DE-Juel1)IAS-1-20090406 000860449 980__ $$aI:(DE-Juel1)PGI-1-20110106 000860449 980__ $$aI:(DE-82)080009_20140620 000860449 980__ $$aI:(DE-82)080012_20140620 000860449 9801_ $$aFullTexts