001     860449
005     20210130000514.0
024 7 _ |a 10.1007/s11249-016-0665-z
|2 doi
024 7 _ |a 1023-8883
|2 ISSN
024 7 _ |a 1573-2711
|2 ISSN
024 7 _ |a 2128/21533
|2 Handle
024 7 _ |a WOS:000380340700002
|2 WOS
024 7 _ |a altmetric:6479062
|2 altmetric
037 _ _ |a FZJ-2019-01203
082 _ _ |a 670
100 1 _ |a Lahayne, Olaf
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rubber Friction on Ice: Experiments and Modeling
260 _ _ |a Dordrecht
|c 2016
|b Springer Science Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549282459_12298
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rubber friction on ice is studied both experimentally and theoretically. The friction tests involve three different rubber tread compounds and four ice surfaces exhibiting different roughness characteristics. Tests are carried out at four different ambient air temperatures ranging from −5 to −13∘C, under three different nominal pressures ranging from 0.15 to 0.45MPa, and at the sliding speed 0.65 m/s. The viscoelastic properties of all the rubber compounds are characterized using dynamic mechanical analysis. The surface topography of all ice surfaces is measured optically. This provides access to standard roughness quantities and to the surface roughness power spectra. As for modeling, we consider two important contributions to rubber friction on ice: (1) a contribution from the viscoelasticity of the rubber activated by ice asperities scratching the rubber surface and (2) an adhesive contribution from shearing the area of real contact between rubber and ice. At first, a macroscopic empirical formula for the friction coefficient is fitted to our test results, yielding a satisfactory correlation. In order to get insight into microscopic features of rubber friction on ice, we also apply the Persson rubber friction and contact mechanics theory. We discuss the role of temperature-dependent plastic smoothing of the ice surfaces and of frictional heating-induced formation of a meltwater film between rubber and ice. The elaborate model exhibits very satisfactory predictive capabilities. The study shows the importance of combining advanced testing and state-of-the-art modeling regarding rubber friction on ice.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pichler, Bernhard
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Reihsner, Roland
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eberhardsteiner, Josef
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Suh, Jongbeom
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kim, Dongsub
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nam, Seungkuk
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Paek, Hanseung
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lorenz, Boris
|0 P:(DE-Juel1)130804
|b 8
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 9
|u fzj
773 _ _ |a 10.1007/s11249-016-0665-z
|g Vol. 62, no. 2, p. 17
|0 PERI:(DE-600)2015908-0
|n 2
|p 17
|t Tribology letters
|v 62
|y 2016
|x 1573-2711
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/860449/files/Lahayne2016_Article_RubberFrictionOnIceExperiments.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/860449/files/Lahayne2016_Article_RubberFrictionOnIceExperiments.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:860449
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRIBOL LETT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21