001 | 860449 | ||
005 | 20210130000514.0 | ||
024 | 7 | _ | |a 10.1007/s11249-016-0665-z |2 doi |
024 | 7 | _ | |a 1023-8883 |2 ISSN |
024 | 7 | _ | |a 1573-2711 |2 ISSN |
024 | 7 | _ | |a 2128/21533 |2 Handle |
024 | 7 | _ | |a WOS:000380340700002 |2 WOS |
024 | 7 | _ | |a altmetric:6479062 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01203 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Lahayne, Olaf |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Rubber Friction on Ice: Experiments and Modeling |
260 | _ | _ | |a Dordrecht |c 2016 |b Springer Science Business Media B.V. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1549282459_12298 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Rubber friction on ice is studied both experimentally and theoretically. The friction tests involve three different rubber tread compounds and four ice surfaces exhibiting different roughness characteristics. Tests are carried out at four different ambient air temperatures ranging from −5 to −13∘C, under three different nominal pressures ranging from 0.15 to 0.45MPa, and at the sliding speed 0.65 m/s. The viscoelastic properties of all the rubber compounds are characterized using dynamic mechanical analysis. The surface topography of all ice surfaces is measured optically. This provides access to standard roughness quantities and to the surface roughness power spectra. As for modeling, we consider two important contributions to rubber friction on ice: (1) a contribution from the viscoelasticity of the rubber activated by ice asperities scratching the rubber surface and (2) an adhesive contribution from shearing the area of real contact between rubber and ice. At first, a macroscopic empirical formula for the friction coefficient is fitted to our test results, yielding a satisfactory correlation. In order to get insight into microscopic features of rubber friction on ice, we also apply the Persson rubber friction and contact mechanics theory. We discuss the role of temperature-dependent plastic smoothing of the ice surfaces and of frictional heating-induced formation of a meltwater film between rubber and ice. The elaborate model exhibits very satisfactory predictive capabilities. The study shows the importance of combining advanced testing and state-of-the-art modeling regarding rubber friction on ice. |
536 | _ | _ | |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141) |0 G:(DE-HGF)POF3-141 |c POF3-141 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Pichler, Bernhard |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Reihsner, Roland |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Eberhardsteiner, Josef |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Suh, Jongbeom |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kim, Dongsub |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Nam, Seungkuk |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Paek, Hanseung |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Lorenz, Boris |0 P:(DE-Juel1)130804 |b 8 |
700 | 1 | _ | |a Persson, Bo |0 P:(DE-Juel1)130885 |b 9 |u fzj |
773 | _ | _ | |a 10.1007/s11249-016-0665-z |g Vol. 62, no. 2, p. 17 |0 PERI:(DE-600)2015908-0 |n 2 |p 17 |t Tribology letters |v 62 |y 2016 |x 1573-2711 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/860449/files/Lahayne2016_Article_RubberFrictionOnIceExperiments.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/860449/files/Lahayne2016_Article_RubberFrictionOnIceExperiments.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:860449 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130885 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-141 |2 G:(DE-HGF)POF3-100 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b TRIBOL LETT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|