000860451 001__ 860451
000860451 005__ 20210130000515.0
000860451 0247_ $$2doi$$a10.1177/0954406216642261
000860451 0247_ $$2ISSN$$a0020-3483
000860451 0247_ $$2ISSN$$a2058-1203
000860451 0247_ $$2WOS$$aWOS:000378745200005
000860451 037__ $$aFZJ-2019-01205
000860451 082__ $$a600
000860451 1001_ $$0P:(DE-Juel1)158003$$aScaraggi, Michele$$b0$$eCorresponding author
000860451 245__ $$aThe effect of finite roughness size and bulk thickness on the prediction of rubber friction and contact mechanics
000860451 260__ $$aLondon$$bInstitution of Mechanical Engineers72026$$c2016
000860451 3367_ $$2DRIVER$$aarticle
000860451 3367_ $$2DataCite$$aOutput Types/Journal article
000860451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549283277_5997
000860451 3367_ $$2BibTeX$$aARTICLE
000860451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860451 3367_ $$00$$2EndNote$$aJournal Article
000860451 520__ $$aWe present the numerical results for the viscoelastic and adhesive contribution to rubber friction for a tread rubber sliding on a hard solid with a randomly rough surface. In particular, the effect of the high- and low-frequency roughness power spectrum cut-off is investigated. The numerical results are then compared to the predictions of an analytical theory of rubber friction. We show that the friction coefficient for large load is given exactly by the theory while some difference between theory and simulations occur for small loads, due to a finite sample-size effects, whereas the contact area is almost unaffected by the low frequency cut-off. Finally, the role of a finite rubber thickness on viscoelastic friction and contact area is introduced and critically discussed. Interestingly, we show that classical rough contact mechanics scaling rules do not apply for this case.
000860451 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000860451 588__ $$aDataset connected to CrossRef
000860451 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b1$$ufzj
000860451 773__ $$0PERI:(DE-600)2229891-5$$a10.1177/0954406216642261$$gVol. 230, no. 9, p. 1398 - 1409$$n9$$p1398 - 1409$$tProceedings of the Institution of Mechanical Engineers$$v230$$x2041-2983$$y2016
000860451 8564_ $$uhttps://juser.fz-juelich.de/record/860451/files/0954406216642261.pdf$$yRestricted
000860451 8564_ $$uhttps://juser.fz-juelich.de/record/860451/files/0954406216642261.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860451 909CO $$ooai:juser.fz-juelich.de:860451$$pVDB
000860451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b1$$kFZJ
000860451 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860451 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860451 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000860451 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860451 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000860451 980__ $$ajournal
000860451 980__ $$aVDB
000860451 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860451 980__ $$aI:(DE-Juel1)PGI-1-20110106
000860451 980__ $$aI:(DE-82)080009_20140620
000860451 980__ $$aI:(DE-82)080012_20140620
000860451 980__ $$aUNRESTRICTED