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A huge number of technological and biological systems involves the lubricated contact between
rough surfaces of soft solids in relative accelerated motion. Examples include dynamical rubber seals
and the human joints. In this study we consider an elastic cylinder with random surface roughness in
accelerated sliding motion on a rigid, perfectly flat (no roughness) substrate in a fluid. We calculate
the surface deformations, interface separation and the contributions to the friction force and the
normal force from the area of real contact and from the fluid. The driving velocity profile as a
function of time is assumed to be either a sine-function, or a linear multi-ramp function. We show
how the squeeze-in and squeeze-out processes, occurring in accelerated sliding, quantitatively affect
the Stribeck curve with respect to the steady sliding. Finally, the theory results are compared to

experimental data.

1 Introduction

The nature of the lubricated contact between soft elas-
tic bodies is one of the central topics in tribologyﬂ7 E],
with applications to the human joints and eyes@], dy-
namic rubber seals, and the tire-road interaction, to
name just a few examples. However, these problems
are also very complex involving large elastic deforma-
tions and fluid flow between narrowly spaced walls and
in irregular channels@]. For smooth spherical or cylin-
drical bodies in steady sliding on flat lubricated sub-
strates (i.e. without surface roughness), such elastohy-
drodynamic problems are now well understoodﬂa, ], at
least as long as interface energies are unimportant. How-
ever, for more common cases involving non-steady slid-
ing, with surfaces with roughness on many length scales,
and with non-Newtonian fluids, rather little is knownﬂj].

In a series of papers two of us have shown how one may
take into account the surface roughness when studying
the influence of a fluid on the sliding (constant velocity)
of an elastic cylinder (or sphere), against another solid
with a nominally flat surface . Using the same ap-
proach we have also studied the fluid squeeze-out between
elastic solids, ] In this paper we study the more
general case of accelerated sliding motion. In particu-
lar, here we investigate the contact between a lubricated
stationary elastic cylinder and a rigid nominally flat sub-
strate in accelerated motion. We calculate the surface
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deformations, interface separation and the contributions
to the friction force and the normal force from the area
of real contact and from the fluid. The driving velocity
profile as a function of time is assumed to be either a sine
function, or a linear multi-ramp function. We also cal-
culate the steady state friction coefficient as a function
of sliding speed (the Stribeck curve), and we compare it
with the friction resulting from the accelerated motion,
the latter affected by the squeeze-in and squeeze-out dy-
namics. In all cases we assume the surface roughness
to show a self-affine fractal content, whereas the fluid
is treated as a Newtonian fluid i.e. the fluid viscosity
is assumed independent of the shear rate in the present
study.

The manuscript is outlined as follows. In Sec. 2 we
summarize the mean field lubrication model. In Sec. 3
we show theory results of the sliding kinematics for a si-
nus motion and a linear multi-ramp motion, and in par-
ticular we shed light on the squeeze-in and -out dynamics
effects on the friction. In Sec. 4 we compare the theory
predictions with experimental results. Sec. 5 contains
the summary and conclusions.

2 Theory

2.1 Equations of motion

We consider the simplest problem of an elastic cylinder
(length L and radius R, with L >> R) with a randomly
rough surface sliding on a rigid solid with a smooth (no
roughness) flat surface. We assume that the sliding oc-
curs in the direction perpendicular to the cylinder axis,
and we introduce a coordinate system with the z-axis
along the sliding direction and with x = 0 corresponding
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Figure 1. (a) Schematic of a rubber ball with a rough surface
sliding on a smooth rigid substrate surface. Physical quanti-
ties like the contact pressure, the fluid pressure and the inter-
face separation varies rapidly in space over many decades in
length scales due to the nature of the surface roughness. The
complex situation in (a) can be mapped on a simpler situa-
tion (b) where the fluid and contact pressures, and the sur-
face separation, are locally-averaged quantities, which varies
slowly in space on the length scale of the surface roughness.
Those averaged quantities obey to modified fluid flow equa-
tions which contain two functions, denoted as flow factors,
which depend on the locally averaged surface separation, and
which are mainly determined by the surface roughness.

to the cylinder axis position, see the schematic of Fig. 1.
The cylinder is squeezed against the substrate by the nor-
mal force Fy, and at the position x in the contact region
between the cylinder and the substrate occur a nominal
(locally averaged) contact pressure (see Fig. [
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where peont 1S the pressure due to the direct solid-solid
interaction and pauiq is the fluid pressure. The bar in-
dicates that both pressures have been averaged over the
surface roughness, e.g., Pauid(2,t) = (Pauid(z,y,t)). We
consider a constant normal load so that

[ ot = 2. 2)

— 00

Let @(x,t) denote the (locally averaged) separation be-
tween the surfaces. For @ > hyns, where hy,g is the
root-mean-square (rms) roughness parameter,

),

hrms (3)

ﬁcont(xat) ~ BE*exp <_a
where a and f are described in Ref. [13]. Eq. (3) is
valid for large enough @. Since an infinite high pressure
is necessary in order to squeeze the solids into complete
contact we must have peont — 00 as u — 0. This is,
of course, not obeyed by (3), and in our calculations we
therefore use the numerically calculated relation peont ()
which reduces to (3) for large enough 4.

The macroscopic gap equation is determined by simple

geometrical considerations. Thus, assuming the cylin-
der deformation to be within the Hertz regime for elastic
solids, the gap equation reads
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In addition the pressure po(z,t) must satisfy the total
normal load conservation condition (2).

Finally, we need an equation which determines the
fluid pressure pauia(z,t). The fluid flow is usually deter-
mined by the Navier Stokes equation, but in the present
case of fluid flow in a narrow gap between the solid walls,
the equation can be simplified resulting in the so called
Reynolds equation. For surfaces with roughness on many
length scales, this equation is also inconveniently too
complex, numerically, to be directly solved. However,
when there is a separation of length scales, i.e., when the
longest (relevant) surface roughness wavelength compo-
nent is much shorter than the width (in the sliding di-
rection) of the nominal cylinder-flat contact region, it is
possible to eliminate the surface roughness and obtain a
modified (or effective) Reynolds equation describing the
locally averaged fluid velocity and pressure fields. Such
equations are characterized by two correction factors,
namely ¢, (pressure flow factor) and ¢, (shear flow fac-
tor), which are mainly determined by the surface rough-
ness and depend on the locally averaged surface separa-
tion @. Thus, the effective 2D fluid flow current

Wy (a) 1 1 =
J = _vaﬁuld + EUV + §hrms¢s (U)V (5)

satisfies the mass conservation equation
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o TV I=0. (6)

Substituting (5) in (6), and writing v = vpZ, gives the
modified Reynolds equation:
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The equations (1), (2), (3), (4), and (7) represent 5
equations for the 5 unknown variables pg, Peont, Pfuid, U
and up. We note that (7) is solved with Cauchy boundary
conditions, whereas the macroscopic cavitation is set by
requirinﬂ PAuid > 0.

A brief note on the numerical procedure. Eq. (7)
is discretized in the time with Crank-Nicolson approach
and automated stepping, whereas central differences and
structured mesh are adopted for the spatial derivatives.

1We note that for soft elastic solids, like rubber, we have shown in

Ref. E] that including cavitation or not has no drastic effect on
the result, and in particular the friction coefficient as a function
of the sliding speed, u = p(v), is nearly unchanged.



The resulting non-linear system of equations is then lin-
earized and numerically solved as for the generic steady
lubricated contact described in [7].

2.2 Frictional shear stress and friction force

The friction force acting on the bottom surface can
be obtained by integration of the frictional shear stress
over the bottom surface. The frictional shear stress has
a contribution from the area of contact Teont(,y,t) and
another from the fluid 7qyid(z,y,t). Because of the mul-
tiscale surface roughness both quantities varies rapidly
in space. However, one can eliminate (integrate out) the
roughness and obtain effective (locally averaged) contact
and fluid shear stresses so the total effective shear stress
is

T = Tcont + THuid- (8)

For the cylinder geometry we consider, 7, Tcont and Tauid
are independent of the y-coordinate, i.e., they depend
only on x and the time ¢. The contribution from the
area of contact Teont = —71A(2,t)/A(0) depend on the
relative contact area A(x,t)/Ag, which we calculate using
the Persson contact mechanics theory. For simplicity we
assume below that the shear stress 77 is independent of
the sliding speed.

The frictional shear stress Tauiq originating from the
fluid is given by

Oy
Thuid = 15 9)

Using the lubrication approximation this givesﬂ]:
a6 = -0 w0 Vp(x). (10)
TAuid - u(x) 2 p .

Averaging over the surface roughness results in an effec-
tive fluid shear stress

Tlovo
U

Tuid = — (P + bts) - %(bfpﬁvﬁﬂuid, (11)
where the friction factors ¢¢, ¢g and ¢g, depend on the
average interfacial separation 4. In Ref. ﬂﬂ] we derived
expressions for ¢¢, ¢ and ¢g, which we use in the calcu-
lations presented below.

One particular important factor is

where 79 is the low shear rate fluid viscosity, and where
7 is the viscosity at the shear rate 4. It is very important
to note that ¢¢ can be very large, and can have a very
strong influence on the friction force (see Sec. 3.1 below).
Neglecting shear thinning, it follows from (12) that when
the separation u(x) is constant, ¢ = 1. The following
arguments show, however, that if the fluid film thickness
varies strongly with x, which will always be the case when
the sliding speed becomes so low that asperity contacts
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Figure 2. The interfacial separation u(z) as a function of
the lateral coordinate x. We assume ¢ << 1. Hence the
average interfacial separation @ = (u) = (1 +¢€)/2 = 1/2,
while the average of the inverse of the separation is (1/u) =
(14 1/€)/2 ~ 1/(2¢) >> u. Hence in this case (assuming no
shear thinning) ¢r = a(1/u) ~ 1/e >> 1.
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Figure 3. Example of isotropic surface roughness power spec-
trum for surfaces: red curve for the surface with hyms = 3 pum,
green curve for the one with hAyms = 1 pym.

start to occur, ¢¢ can be much larger than unity.

In Fig. @ we illustrate the origin of why ¢¢ >> 1 in
some cases. Assume for simplicity no shear thinning so
that ¢f = @(1/u). Assume that the interfacial separation
u(z), as a function of the lateral coordinate x, takes the
form shown in Fig. [ with € << 1. Hence the average
interfacial separation @ = (u) = (1 +€)/2 ~ 1/2, while
the average of the inverse of the separation is (1/u) =
(1+1/e)/2 ~ 1/(2¢) >> u. Hence in this case ¢ =
u(l/uy =~ 1/e >> 1.

3 Numerical results

We consider the sliding of an elastic cylinder (radius
R = 4 mm) with a randomly rough surface on a rigid,
perfectly smooth substrate. The cylinder has the Young’s
modulus £ = 3 MPa and Poisson ratio v = 0.5. We con-
sider two cases where the cylinder rms surface roughness
amplitude is Ayms = 1 pm and hys = 3 pum, respectively.
The surface roughness power spectra of the two surfaces
are shown in Fig. B. The surfaces are self-affine fractal
for the wavenumber ¢ > 3 x 10> m~!, with the Hurst
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Figure 5. The (a) friction coefficient, (b) actual area of con-
tact, (¢) minimum separation and (d) solid load, as functions
of velocity for surfaces with different roughness: red curves
for hrms = 3 pum and green curves for hyms = 1 pm. Dashed
lines show the contribution of solid-solid contact to the fric-
tion coefficient.

(b)

Figure 6. The sliding speed as a function of time for (a) sinus
time-dependency and for (b) linear multi-ramp.

exponent H = 0.8. We have calculated the pressure and
shear stress flow factors using the theory of Ref. [, and
the results are shown in Fig. 4. The figure shows ¢, and
¢s as a function of the average interface separation @ nor-
malized by the rms height h.ys. Note that as a function
of @/ hyms both power spectra gives the same flow factors,
as indeed expected because the two power spectra differ
only by a prefactor.

3.1 Steady sliding

We first present results for the Stribeck curve, i.e., the
friction coefficient as a function of the sliding speed. In
the calculations below we always used a Newtonian lig-
uid with the viscosity n = 0.1 MPa as is typical for a
hydrocarbon lubrication oil. The frictional shear stress
71 acting in the area of real contact is assumed to be
71 = 1 MPa. Fig.[H shows (a) the friction coefficient, (b)
actual area of contact, (¢) minimum separation and (d)
the solid load, as functions of velocity for the surfaces
with Ayms = 3 pum (red curves) and hyps = 1 pm (green
curves). In Fig. [H(a) the dashed lines show the contribu-
tion of solid-solid contact to the friction coefficient, and
the full lines the total friction coefficients. Note that the
surface with the larger surface roughness exhibits a peak
in the friction coefficient before entering into the bound-
ary lubrication region. This peak is due to the friction
factor ¢¢ as can be understood as follows. When the sur-
face roughness amplitude increases, the velocity where
the first asperity contact occurs will shift to higher slid-
ing speeds. As shown in Fig. B(b) the first contact occur
roughly at one decade higher velocity for the hypms = 3 pm
surface as compared to the hypns = 1 um surface. When
the area of real contact increases, the area where the sur-
face separation is very small (say of order nm) will also
increase. In this area the frictional shear stress is given
by nu/u where u is the surface separation.



0.5 :

go.4 i

503

502

v 0.1
O i i i

= 1 . . . . . . . . .

c L ;

508 | I O

E 06 [ |Fo.002s 0

o : ‘ ‘ : :

c 047 ' tmp = t,=0.058

i) 02t : : 3 3 3

E o

= ©

= 3 3

©

S

i)

S

)

[@2]

k=)

g ©

< ; ;

3

<

S

[@2]

o

E 8 —

= s | |

c Ll @

o | |

% 5 L

g 4

o 37

8 27

c 1= : ‘ ‘ ‘

£ ol

1203 1205 1207 1209 1211
time [s]

Figure 7. The (a) velocity, (b) friction coefficient, (c) load for
solid-solid contact, (d) relative contact area, and (e) minimum
separation, as functions of time for ramp velocity profile with
different ramping rates: red curves for ramp time of tramp =
to = 0.002 s and green curves for ramp time of 0.05 s. For
the normal load 100 N/m, rubber cylinder radius R = 4 mm,
surface roughness amplitude Arms = 1 pm, elastic modulus
E = 3 MPa and lubricant viscosity of 0.1 Pas. For the ramp
profile (b) in Fig.[d with (for red curve): to = 0.002's, t; —to =
2s,ta —t1 =0 and t3 — to = 10 s. For the green curves we
used the same time interval except to = 0.05 s. The red curve
is shifted by 0.048 s to larger times in order for the start of
ramping to occur at the same time point in the figure.

Thus, when the surface roughness is high enough there
will be an important contribution to the friction force
from shearing surface regions where the surfaces are sep-
arated by a very small distance, say a few nm or so.
This is manifested in the theory above by ¢¢ >> 1 (see
Fig. [ and Sec. 2.2). This contribution will be reduced at
smaller sliding speeds because the shear rate is propor-
tional to v. It will also decrease at higher speeds because
then there will be no region where the surface separa-
tion is very small. Hence, if the surface roughness is big
enough, we expect a peak in the friction coefficient close
to (but below) the velocity where the first contact occur
between the surfaces. We note that this result is for New-
tonian fluids. If the fluid exhibit shear thinning the effect
we discussed may be absent. We also note that a peak
in the friction coefficient has been observed for sliding
friction experiments with glycerol as the lubricant ﬂﬂ]
The effect was only observed when the surface roughness
was large enough, in agreement with the results obtained
here.

3.2 Linear multi-ramp motion

Let us now consider non-stationary sliding. We as-
sume first a multi-ramp case where the driving velocity
depends on time as indicated in Fig.[d(b). The most in-
teresting results are for a time period around the time
t = t3 of the start of the second ramping of the velocity.
In Fig.[d we show (a) the velocity, (b) friction coefficient,
(¢) load for solid-solid contact, (d) relative contact area,
and (e) the minimum separation, as functions of time for
two ramp velocity profiles with different ramping rates:
red curves for ramp time of t;amp = to = 0.002 s and
green curves for ramp time of 0.05 s. For the normal
load 100 N/m, rubber cylinder radius R = 4 mm, sur-
face roughness amplitude hypns = 1 pum, elastic modulus
E = 3 MPa and lubricant viscosity of 0.1 Pas. Note the
large peak in the friction for the faster ramping. This is
again due to the shear stress term nv/u. Thus, at the
start of ramping the average surface separation is small
and the area of real contact large. Thus there will be rel-
atively large regions between the surfaces where the sur-
face separation is very small (nanometers) and shearing
the thin fluid film in these regions will give an important
contribution to the friction force, which is the origin of
the large peak in the friction force observed in Fig. [A(b).
We will see in the following (see Sec. 4) that the existence
of this friction peak in independent experimental results.
Furthermore, it follows that the breakloose friction force
observed in many experiments, e.g., for syringes, may
have an important contribution from shearing the non-
contact, lubricant filled regions with small surface sepa-
ration, i.e., the breakloose friction for is not solely due
to shearing the area of real contact as assumed in some
studies of the breakloose friction force, ]

Fig.|d shows the same as in Fig. ﬂ but now for ramping
the velocity linear to vop = 1 m/s during 0.1 s. Results are
shown for the two different surfaces with hypns = 3 pm
(red curves) and hypms = 1 pm (green curves). Note that
for the smoother surface the friction peak during ramping
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Figure 8. The (a) velocity, (b) friction coefficient, (c) load for
solid-solid contact, (d) relative contact area, and (e) minimum
separation, as functions of time for ramp velocity regime for
surfaces with different roughness: red curves for Ayms = 3 um,
green curves for hAyms = 1 pm. Ramp time 0.1 s, maximum
velocity 1 m/s, normal load of 100 N/m, rubber cylinder ra-
dius R = 4 mm, elastic modulus £ = 3 MPa and lubricant
viscosity of 0.1 Pas. For the ramp profile (b) in Fig. | with
(for both red and green curves): o = 0.1 s, {3 —tg = 2 s,
tz—t1 :0andt3—t2 =10 s.

is higher and more narrow (as a function of time) than for
the rougher surface. The peak is due to the shearing of
the fluid film, and since the smoother surface, before the
start of the velocity ramp, has larger surface area with
small surface separation u than for the rougher surface,
the term nv/u, when integrated over the surface area,
will be larger for the smoother surface. The more narrow
width of the friction peak result from the fact that as the
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Figure 9. The (a) velocity, (b) friction coefficient, (c) load for
solid-solid contact, (d) relative contact area, and (e) minimum
separation, as functions of time for sinusoidal reciprocating
motion with different roughness: red curves for hyms = 3 pm
and green curves for hyms = 1 pm. For the reciprocating
frequency 1 Hz, velocity amplitude of 1 m/s, normal load of
100 N/m, rubber cylinder radius R = 4 mm, elastic modulus
E = 3 MPa and lubricant viscosity of 0.1 Pas.

speed increases the fluid pressure buildup will separate
the surfaces, and complete separation occur faster for the
smoother surface while the rougher surface still will have
some surface regions with small separation u at relatively
high sliding speed, which will result in a contribution
from shearing the surface regions with small separation
extending to higher sliding speeds for the more rough
surface.

3.3 Sinus sliding motion
Fig. [d shows the same results as in Fig. [ but now for
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Figure 10. Friction (b) and minimum locally-averaged inter-
face gap (c) as a function of the sliding speed in log scale, for
the sliding kinematics reported in (a). The sliding motion (a)
is obtained by constant acceleration from 0 up to 1 m/s, and
then constant deceleration up to stop. Four accelerations a
values are adopted, with the steady sliding case correspond-
ing to @ — 0 (solid thick line in (b) and (c)). The arrows
in (b) and (c) show the time direction. For the normal load
777.5 N/m, rubber cylinder radius R = 2.5 mm, isotropic
surface roughness with hrms = 2.4 pm, low frequency cut-off
go = 0.311 10®> m, high frequency cut-off ¢1 = 5.9 107 m,
roll-off ¢ = ¢o and fractal dimension 2.2. Elastic modulus
E = 3 MPa (Poisson ratio v = 0.5) and Newtonian lubricant
with viscosity 0.1 Pas. of = 10 M Pa.

sinusoidal reciprocating motion (as in Fig. (a)).

Note that there is an asymmetry in the friction co-
efficient around the time-points where the velocity van-
ishes. This is due to the time dependency of the fluid
squeeze-out: during the fast motion (v &~ 1 m/s) the sur-
face separation is relatively large (about 12 pm in both
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Figure 11. Friction (b) and minimum locally-averaged inter-
face gap (c) as a function of the sliding speed in log scale, for
the sliding kinematics reported in (a). In particular, the slid-
ing motion (a) is obtained by constant acceleration from 0 up
to 1 m/s, and then constant deceleration up to stop. Four ac-
celerations a values are adopted, with the steady sliding case
corresponding to a — 0 (solid thick line in (b) and (c)). The
arrows in (b) and (c) show the time direction. For the same
parameters of Fig. but for a cylinder radius R = 2.5 cm.

cases). As the velocity decreases towards zero the sur-
face separation decreases, but this decrease continue for a
short time interval even during the increase in the veloc-
ity beyond the time-points where v = 0. Thus, the min-
imum surface separation, and the local maximum in the
friction coefficient, occur slightly after the time-points
where the velocity vanish. This type of asymmetry in
the time-dependent friction coefficient has been observed
experimentally|17] (see Sec. 4). Note also that the fric-
tion peaks are much higher for the larger surface rough-
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ness case. This is because the surface separation in the
low-velocity range is still rather large, and only for the
large-roughness case is the area of contact, and the region
where the surface separation is very small (where hence
the shear stress nv/u is large), high. This explains why
for the small roughness surface a (small) friction peak is
observed only after the velocity has changes sign, while
for the large roughness case, (large) friction peaks are
observed on both sides of the v = 0 time-points.

3.4 The role of squeeze-out and squeeze-in on
friction

During accelerated sliding, squeeze-in and squeeze-out
can be defined as the normal (to the contact) inter-
face motion caused by, respectively, a positive and nega-
tive rate of variation of the average interface separation.
Thus, during squeeze-in a fluid flow, driven by pressure
gradient, will occur toward the contact in order to replen-
ish the interface up to the new interface separation value,
the latter dictated by the accelerated motion. Since a fi-
nite time, proportional to the fluid viscosity, is required
for the squeeze-in process to occur, a larger friction than
for the steady-sliding is expected during this replenish-
ment motion, determined by the smaller average contact
gap (thus, larger fluid and solid contact friction). Simi-
lar but inverse considerations apply for the squeeze-out

process.
We observe that the breakloose friction, i.e. the fric-
tion measured during the start-up of a machine element,
will thus endure more than expected (i.e. on the basis
of the rate of variation of sliding or rolling speeds) be-
cause of this finite time associated to the squeeze-in phe-
nomenon. It would be therefore very interesting to quan-
tify, even for a particular contact case, the fluid squeeze
effects on the friction. Thus in Fig. [10 we show calcula-
tion results, in term of friction (b) and minimum locally-
averaged interface gap (c) as a function of the sliding
speed, for the sliding kinematics reported in Fig. m(a).
In particular, the sliding motion is obtained by constant
acceleration from 0 up to 1 m/s, and then constant de-
celeration up to stop. Four accelerations a = 0, 0.02, 0.1
and 0.5 m/s? values are adopted, with the steady sliding
case corresponding to a — 0 (solid thick line in Fig. [L0(b)
and (c)), which we refer to as the Stribeck curve. The
arrows in Fig. [10(b) and (c) show the time direction.
We note first that all the friction curves lie on the
Stribeck curve during the first acceleration instants (note:
since time scales linearly with velocity, v = at, the log
scale in Fig. E(b) and (¢) during acceleration corre-
sponds to a log scale in times, too). This is due to the ini-
tial condition assumed, for all the simulations, given by a
rough-Hertzian initial condition (i.e. without oil entrap-



ment at start-up, see e.g. the for hard interactions ﬂﬁ])
At increasing sliding speeds, however, the squeeze-in pro-
cess occurs leading to an enlargement of the breakloose
friction plateau (say, the boundary regimeﬁoward in-
creasing velocities (see dashed curve in Fig. [10(b)). This
effect is more severe for larger accelerations, and it in-
volves a contact range belonging to the mixed lubrication
regime. This extended frictional plateau corresponds to
an extended plateau in the minimum film thickness value,
as shown in Fig. [L0(c). By further increasing the sliding
speed, all the minimum gap and friction curves converge
to the master steady-sliding curve.

At decreasing sliding speeds, instead, the squeeze-out
process occurs leading to an extended plateau in the min-
imum separation. Interestingly, the minimum gap is al-
most doubled for the fastest motion. As a consequence,
a plateau is obtained in the friction curves, with strongly
reduced friction coefficient, as clearly shown in Fig. E(b)
Furthermore, we observe that the initial and final con-
tact conditions differs because of squeeze dynamics. The
latter involves complex percolation mechanisms at the
interface M], and in particular under large normal pres-
sures, the solid contact area can percolate in an annu-
lar region close to the Hertzian contact circle, leading
to a mechanically stable lubricant entrapment. In such
a case, only very slow (long time scales) inter-diffusion
processes, where the trapped islands of pressurized fluid
diffuse into the rubber (and from there perhaps to the
external environment) can lead the lubricant to escape
from the trapping.

Similar considerations apply to Fig. |ﬂ, where we have
simulated for the same parameters of Fig. [1d but for a
cylinder radius R = 2.5 cm. As expected, the larger
radius (thus, the larger Hertzian area) increases the
strength of the squeeze out dynamics effects, leading to a
larger extension of the frictional plateau during squeeze-
in, and to a smaller friction value during squeeze-out. Fi-
nally, in Fig. [1d we show the effect of the shear stress act-
ing in the true contact area o¢ and of the cylinder radius
on the squeeze dynamics and observable friction. We note
that at reduced values of o¢, during the start of ramping
(squeeze-in motion), a peak occurs in the friction curves
(Figs. [dc and [13d) instead of the plateau discussed be-
fore (Figs. [[da and [19b). This is due to the reduction
of the adhesive contribution to dissipation (occurring in
the true contact areas) which allows the shearing action,
occurring in the nanometers-separated fluid-filled areas,
to increase its weight in the total friction, similarly to the
large peak in the friction observed in Fig. [d(b).

4 Experimental results

4.1 Sinus sliding motion

The results presented in Sec. 3.3 are in qualitative
agreement with experimental observation. Thus, Vlade-
scu et al. ﬂﬂ] have performed experiments where a steel
cylinder with the radius of curvature R = 4 cm was slid
in reciprocating motion (stroke length 2.86 cm, frequency
f=1,2or 3 Hz) on a flat fused silica glass surface. The
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Figure 13.  The (a) friction coefficient and (b) minimum
separation for a steel cylinder (radius R = 4 cm) in contact
with a fused silica specimen with a flat surface lubricated by
an oil with the viscosity 0.062 Pas at T' = 45°C (temperature
at the measurement). The silica disk is oscillating at the
frequency f = 2 Hz (red curve) or 3 Hz (green curve). The
stroke length is d = 2.86 cm and the normal load per unit
length Fx/L = 1000 N/m. Based on experimental data from
Ref. [17].

steel surface has the rms-roughness 18 nm when mea-
sured over a 431pum x 575um surface area. The interface
was lubricated with an oil with the viscosity 0.062 Pas at
T = 45°C (the temperature during the measurement).

Fig. 13 and [14 shows (a) the friction coefficient and
(b) the minimum separation between the steel cylinder
and the glass surface. Fig. [13 shows results when the
silica disk is oscillating at the frequency f = 2 Hz (red
curve) or 3 Hz (green curve), with the normal load per
unit length Fy/L = 1000 N/m. Fig. [14 shows results for
the normal load per unit length Fx/L = 1000 N/m (red
curve) and 3000 N/m (green curve), with the silica disk
oscillating at the frequency f = 3 Hz.

Note that the results in Fig. [1d and [14 are qualita-
tively identical to what we observe in our calculations,
see Fig.[d (b) and (¢). In particular, the friction peak
just after reversal of the sliding direction is larger than
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Figure 14.  The (a) friction coefficient and (b) minimum
separation for a steel cylinder (radius R = 4 cm) in contact
with a fused silica specimen with a flat surface lubricated by
an oil with the viscosity 0.062 Pas at T' = 45°C (tempera-
ture at the measurement). The normal load per unit length
Fx/L = 1000 N/m (red curve) and 3000 N/m (green curve).
The stroke length is d = 2.86 cm and the silica disk is oscillat-
ing at the frequency f = 3 Hz. Based on experimental data
from Ref. [17].

the friction peak just before reversal of the sliding di-
rection. This is also found in the theory and is due to
the longer squeeze-out time in the former case. Note also
that the minimum in the surface separation as a function
of the stroke angle is displaced slightly to the right of the
turn-around angle o = 180°. This is again due to the
longer squeeze-out time to the right of the turn-around
angle. As expected, increasing the frequency from f =2
to 3 Hz result in lower friction and larger surface sep-
aration due to the build-up of a higher hydrodynamic
pressure in the lubricant film as a result of the increase
in the sliding speed. Similarly, increasing the load from
Fx/L = 1000 to 3000 N/m reduces the oil film thickness
and increases the friction.

At the moment we cannot replicate numerically the
results reported by Vladescu et al. ﬂﬂ], indeed, under
a load of Fx/L = 1 kN/m, and for the given materi-
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Figure 15. Friction coefficient (top) and minimum separation
(bottom) for a steel cylinder (radius R = 4 c¢m) in contact
with a fused silica specimen with a flat surface lubricated by
an oil with the viscosity 0.27 Pas at T' = 15°C (temperature at
the measurement). The normal load per unit length Fx/L =
3000 N/m. The stroke length is d = 2.86 cm and the silica
disk is oscillating at the frequency f = 3 Hz. Adapted from
Vladescu et al. [17].

als properties (E; = 210 GPa and 11 = 0.29 for steel,
Ey; = 73 GPa and v = 0.17 for the fused silica), the
Hertzian semicontact length is about 0.95 mm, whereas
at Fv/L = 3 kN/m one finds about 1.6 mm. Considering
that the ring is 2 mm thick, this means that the interac-
tion is not occurring under a Hertzian-like condition (i.e.
the contact is extended to the ring edges) and thus the
shape of the ring edges will strongly determine the hydro-
dynamic lift. However, similarly to what reported before,
the main dynamical features of the lubricated contact are
in very good agreement with the theory. This is con-
firmed also in the comparison between Fig. 17 (adapted
from Vladescu et al. ]) and our results Fig. [1d. In
particular, on the top and bottom figure we show, re-
spectively, the friction and the minimum separation for a
cylinder in sliding reciprocating motion. It is interesting
to observe that the experimental friction curves exhibit
a localised friction spike during motion reversal (due to a
squeeze-out prolonged over the beginning of the acceler-
ated motion), which is in qualitative agreement with the
theory.

4.2 Linear multi-ramp motion

In order to experimentally investigate the lubricated
line contact of a generic hydraulic seal, a test rig has
been designed and set up at the Institute for Fluid Power
Drives and Controls (IFAS). A steel cylinder with radius
R = 20 cm is rotated at varying angular speed w, and
squeezed in contact with a L = 4 cm long Nitrile Butadi-
ene Rubber (NBR) cylinder (segment of an o-ring) with
diameter D = 0.5 cm. A normal force Fy is applied to
the contact, see see Fig. [[4(a). The rubber cylinder is
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Figure 16. Friction coefficient (top) and minimum separation
(bottom) for an elastic rough cylinder (radius R = 1 mm,
E, = 3.95 MPa) in alternating sinus sliding contact with a
rigid flat surface, lubricated by a Newtonian oil with viscosity
0.1 Pas. The normal load per unit length F/L = 117 N/m,
whereas the shear stress acting in the true contact areas is
assumed of = 1 MPa. The stroke length is d = 0.1 m and
the stroke time is 7' = 0.1 s. The cylinder is covered by
an isotropic roughness characterized by go = 1 x 10* m™*,
¢=3x10°m*, ¢t =3x10°m™ Y, Aems = 1 pm and fractal
dimension Df = 2.
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Figure 17. (a) Schematic picture of the experimental friction
tester. The rubber cylinder is pushed with a dead weight
towards the rotating steel cylinder. (b) The steel cylinder has
surface roughness prepared by sandblasting (bottom). The
latter results in surface roughness with isotropic statistical
properties.

fixed in space while the steel cylinder can be let to rotate
either with a constant speed or else in accelerated mo-
tion. The rubber cylinder is assumed to have a perfectly
smooth surface while the steel surface is sandblasted with
the rms-roughness 2 pm. The lubricant fluid is a stan-
dard hydraulic oil with the room-temperature viscosity
n ~ 0.1 Pas.

Fig. [1d shows the friction coefficient, and the periph-
eral velocity of the steel cylinder, as a function of time.
The velocity of the steel cylinder first increases linearly
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Figure 18. The friction coefficient, and the rotation velocity
of the steel cylinder, as a function of time. The velocity of
the steel cylinder first increase linearly with time and then
decrease linearly with time with the same absolute value for
the acceleration. In (a) we show results for three cases where
the maximum velocity differ but the load (or normal force) is
constant Fv = 31 N. In (b) we show results for two different
normal load, Fivx = 31 N and Fx = 62 N. o = 11.5 MPa.

with time and then decreases linearly with time with the
same absolute value as for the accelerated stage. In (a)
we show results for three cases where the maximum ve-
locity differ but the normal force is constant Fy = 31 N.
In (b) we show results for two different normal load,
Fy = 31 N and Fy = 62 N. Points (with colors) are
experimental results, whilst the dashed line is from the
theory presented in Sec. 2 (roughness on the fixed cylin-
der), whereas the solid line is again from theory but ap-
plied to the case corresponding to the experimental setup
(roughness on the moving cylinder, see the complemen-
tary theory in the companion paper ﬂﬂ]) We observe
that the agreement is very good, unless for the very be-
ginning of the ramp motion where the lateral deformation
dynamics of the instrumented measurement arm plays a
role in the formation of the breaklose friction value (so
called elastic sliding). However, we also note, interest-



ingly, that including in the calculations the roughness on
the top fixed (dashed line) solid instead of on the bottom
sliding (solid line) solid leads to qualitatively different
friction results, suggesting the importance of the correct
evaluation of flow and friction factors in soft contacts.

5 Summary and conclusion

We have extended the theory developed in Ref. ﬂ}
[d, [11] in order to study non-stationary (transient) elas-
tohydrodynamic problems including surface roughness,
non-Newtonian liquid lubrication, and arbitrary accel-
erated motion. We have presented several illustrations
for an elastic cylinder with randomly rough surface slid-
ing on a perfectly flat and rigid substrate lubricated by
a Newtonian fluid (no shear thinning). We considered
both reciprocal motion (v = vgsin(wt)) and linear multi-
ramp motion. The calculated results were compared to
experimental data and very good qualitative agreement
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was obtained. We plan to perform sliding friction experi-
ments of the type described above on surfaces with known
(measured) surface roughness power spectra to compare
quantitatively to the theory predictions. We will report
on these results elsewhere.
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