000860464 001__ 860464
000860464 005__ 20210130000519.0
000860464 0247_ $$2doi$$a10.1016/j.wear.2017.01.092
000860464 0247_ $$2ISSN$$a0043-1648
000860464 0247_ $$2ISSN$$a1873-2577
000860464 0247_ $$2WOS$$aWOS:000403902000033
000860464 037__ $$aFZJ-2019-01218
000860464 082__ $$a670
000860464 1001_ $$0P:(DE-HGF)0$$aMahboob Kanafi, Mona$$b0$$eCorresponding author
000860464 245__ $$aRubber friction on 3D-printed randomly rough surfaces at low and high sliding speeds
000860464 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000860464 3367_ $$2DRIVER$$aarticle
000860464 3367_ $$2DataCite$$aOutput Types/Journal article
000860464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549287175_5997
000860464 3367_ $$2BibTeX$$aARTICLE
000860464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860464 3367_ $$00$$2EndNote$$aJournal Article
000860464 520__ $$aRubber friction depends on the surface roughness of the counter surface, e.g. a road surface. We have measured the friction for two rubber compounds sliding on randomly rough surfaces produced by 3D-printing. The surfaces had different macro-roughness and the friction experiments were performed over six decades in speeds, from 10−6 m s−1 to 1 m s−1, on both dry and lubricated substrates. The viscoelastic modulus master curves of the rubber compounds, and their large-strain effective modulus were obtained from dynamic mechanical analysis (DMA). The measured friction coefficients were compared to the calculations of rubber friction using Persson's contact mechanics theory. The role of the macro-level roughness is discussed.
000860464 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000860464 588__ $$aDataset connected to CrossRef
000860464 7001_ $$0P:(DE-HGF)0$$aTuononen, Ari Juhani$$b1
000860464 7001_ $$0P:(DE-Juel1)168534$$aDorogin, Leonid$$b2
000860464 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b3$$ufzj
000860464 773__ $$0PERI:(DE-600)1501123-9$$a10.1016/j.wear.2017.01.092$$gVol. 376-377, p. 1200 - 1206$$p1200 - 1206$$tWear$$v376-377$$x0043-1648$$y2017
000860464 909CO $$ooai:juser.fz-juelich.de:860464$$pVDB
000860464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b3$$kFZJ
000860464 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860464 9141_ $$y2018
000860464 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWEAR : 2017
000860464 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860464 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860464 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860464 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860464 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860464 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860464 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860464 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860464 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860464 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860464 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860464 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000860464 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860464 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000860464 980__ $$ajournal
000860464 980__ $$aVDB
000860464 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860464 980__ $$aI:(DE-Juel1)PGI-1-20110106
000860464 980__ $$aI:(DE-82)080009_20140620
000860464 980__ $$aI:(DE-82)080012_20140620
000860464 980__ $$aUNRESTRICTED