000860465 001__ 860465
000860465 005__ 20210130000519.0
000860465 0247_ $$2doi$$a10.2346/tire.17.450103
000860465 0247_ $$2ISSN$$a0090-8657
000860465 0247_ $$2ISSN$$a1945-5852
000860465 0247_ $$2WOS$$aWOS:000413847000002
000860465 037__ $$aFZJ-2019-01219
000860465 082__ $$a600
000860465 1001_ $$0P:(DE-HGF)0$$aFortunato, Gaetano$$b0
000860465 245__ $$aDependency of Rubber Friction on Normal Force or Load: Theory and Experiment
000860465 260__ $$aAkron, Ohio$$c2017
000860465 3367_ $$2DRIVER$$aarticle
000860465 3367_ $$2DataCite$$aOutput Types/Journal article
000860465 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549287298_13266
000860465 3367_ $$2BibTeX$$aARTICLE
000860465 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860465 3367_ $$00$$2EndNote$$aJournal Article
000860465 520__ $$aIn rubber friction studies, it is often observed that the kinetic friction coefficient μ depends on the nominal contact pressure p. We discuss several possible origins of the pressure dependency of μ: (1) saturation of the contact area (and friction force) due to high nominal squeezing pressure; (2) nonlinear viscoelasticity; (3) nonrandomness in the surface topography, in particular the influence of the skewness of the surface roughness profile; (4) adhesion; and (5) frictional heating. We show that in most cases the nonlinearity in the μ(p) relation is mainly due to process (5), frictional heating, that softens the rubber, increases the area of contact, and (in most cases) reduces the viscoelastic contribution to the friction. In fact, because the temperature distribution in the rubber at time t depends on the sliding history (i.e., on the earlier time t′ < t), the friction coefficient at time t will also depend on the sliding history, that is, it is, strictly speaking, a time integral operator. The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures that may strongly affect the area of real contact and the friction force (and the wear-rate). This is the case for rubber sliding on road surfaces at speeds above 1 mm/s. Previously, we derived equations that described the frictional heating for solids with arbitrary thermal properties. Here, the theory is applied to rubber friction on road surfaces. Numerical results are presented and compared to experimental data. We observe good agreement between the calculated and measured temperature increase.
000860465 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000860465 588__ $$aDataset connected to CrossRef
000860465 7001_ $$0P:(DE-HGF)0$$aCiaravola, Vincenzo$$b1
000860465 7001_ $$0P:(DE-HGF)0$$aFurno, Alessandro$$b2
000860465 7001_ $$0P:(DE-Juel1)158003$$aScaraggi, Michele$$b3
000860465 7001_ $$0P:(DE-Juel1)130804$$aLorenz, Boris$$b4
000860465 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b5$$eCorresponding author$$ufzj
000860465 773__ $$0PERI:(DE-600)2249019-X$$a10.2346/tire.17.450103$$gVol. 45, no. 1, p. 25 - 54$$n1$$p25 - 54$$tTire science and technology$$v45$$x1945-5852$$y2017
000860465 8564_ $$uhttps://juser.fz-juelich.de/record/860465/files/1512.01359.pdf$$yRestricted
000860465 8564_ $$uhttps://juser.fz-juelich.de/record/860465/files/1512.01359.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860465 909CO $$ooai:juser.fz-juelich.de:860465$$pVDB
000860465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b5$$kFZJ
000860465 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860465 9141_ $$y2018
000860465 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860465 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860465 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000860465 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860465 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860465 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000860465 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860465 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000860465 980__ $$ajournal
000860465 980__ $$aVDB
000860465 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860465 980__ $$aI:(DE-Juel1)PGI-1-20110106
000860465 980__ $$aI:(DE-82)080009_20140620
000860465 980__ $$aI:(DE-82)080012_20140620
000860465 980__ $$aUNRESTRICTED