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Ice friction: Glacier sliding on hard randomly rough bed surface
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I present a theory for ice friction for ice sliding on a hard randomly rough surface which includes ice
melting-freezing (regelation), viscoelastic energy dissipation, and cavitation. The theory is an exten-
sion of earlier work by Weertman, Lliboutry, Nye, and Kamb. I present numerical results for surfaces
with realistic surface roughness power spectra. I consider both airfilled and (pressurized) waterfilled
cavities. The calculated frictional shear stresses are consistent with experimental observations for
temperate glaciers. Published by AIP Publishing. https://doi.org/10.1063/1.5055934

I. INTRODUCTION

Mass loss from glaciers represents the largest (65%) con-
tribution to observed sea level rise. Fast glacier flow is mainly
accomplished by localized motion at the ice-solid interface
(called basal motion), involving complex sliding and shear-
ing processes usually in the presence of water under high
pressure and varying thermal conditions. However, due to
the virtual inaccessibility of the subglacial environment, the
sliding mechanisms are poorly understood.

Glacial dynamics are not completely accounted for in
recent sea level projections. The core of the problem is to
understand the complex spatio-temporal patterns and interac-
tions at the interface between the moving glacier ice and the
underlying bedrock. The response of the interface dynamics to
external forcing, such as from surface melt water, is highly non-
linear as it strongly depends on the mechanical and thermal
interface conditions, which in turn have a memory of earlier
states.1,2

The motion of many glaciers and ice streams is con-
trolled by frictional properties at the bed, which determine
whether and how easily basal sliding will occur. Reliable sea-
level-rise projections require an improved understanding of
ice flow, in particular the slip at the ice-bed interface, which is
currently one of the least understood aspects of glacier dynam-
ics. Processes taking place at the ice-bed interface are poorly
constrained by observation. In situ field measurements at the
bed, from boreholes and tunnels, are very limited in spatial
and temporal extent, while bed conditions are expected to
vary considerably in time and space. Variations in the slid-
ing style, including smooth sliding, stick-slip behavior, slow-
downs, and switches of the flow state, are attributed to basal
processes but are not well understood. A clearer understanding
of the controls on the sliding rate, including time, temperature,
and other basal characteristics, is essential to modeling and
forecasting.

Temperature at the base of the glacier is controlled by
heat conduction in response to geothermal heat flux, strain
heating within the ice, and climate history and has a clear
role in determining the mode and rate of glacier deforma-
tion. Warm-based (temperate) glaciers, those that are at their

melting point at the ice-bed interface, are thought to deform by
a combination of viscous flow and basal sliding. The sliding
may be tied to the geometry and flow conditions of a basal
hydrological system. The upper and central parts of a glacier
flow more quickly than the bottom portions, where the friction
of the valley walls and floor restrict its velocity from increas-
ing. Cold-based glaciers, below freezing at the interface, are
thought to be frozen to the bed, deforming through viscous
flow in the bulk of the glacier only, rather than through basal
sliding.

The friction between the glacier ice and the underly-
ing bedrock has been studied in pioneering work by Weert-
man,3 Lliboutry,4 Nye,5,6 and Kamb.7 Some of these (and
later) studies have assumed very idealized conditions such
as cubic-like bedrock asperities.8 However, in two beauti-
ful and very detailed studies, Nye5 and Kamb7 considered
a more realistic model. Since the work of Nye and Kamb,
contact mechanics and ice friction has developed a lot, and
in this study, I will make use of a recently developed con-
tact mechanics and rubber friction theory9–11 to study some
aspects of ice friction in the context of the motion of glaciers.
I consider the sliding of a thick ice slab (glacier) on a rigid sub-
strate (bedrock) with a randomly rough surface with self-affine
fractal properties. The model includes viscoelastic energy dis-
sipation in the ice, regelation, and cavitation and predicts
frictional shear stresses which are consistent with experimental
observations.

II. SOME BASIC FACTS ABOUT GLACIER DYNAMICS
AND ICE RHEOLOGY

The glaciers in Antarctica are typically h ≈ 1000 m thick
and typically move (flow) with the speed of ∼10–100 m/year
or v ≈ 3 × 10−7 − 3 × 10−6 m/s. For a glacier in steady slid-
ing (no acceleration), the frictional shear stress acting on the
bottom surface of the ice (and on the bedrock) must equal
τf = ρgh sin α, where α is the slip angle (see Fig. 1). In a
typical case, sin α ≈ 0.01 giving τf ≈ 0.1 MPa. The normal
pressure at the ice-rock interface we denote as the squeezing
pressure is given by p0 ≈ ρgh cos α. For h ≈ 1000 m, this gives
p0 ≈ 10 MPa.
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FIG. 1. Ice block on a tilted substrate. If the layer of thickness ∆z does
not accelerate, force balance requires that the pressure p(z) = ρgz cosα and
the tangential stress τ(z) = ρgz sinα. In particular, at the ice-rock interface,
p = p0 = ρgh cosα and τ = τf = ρgh sinα.

The temperature at the bottom of the glaciers is often
at the melting point of the ice. The physical reason for this
is the low thermal conductivity of ice and the large thick-
ness of the ice layer. The geothermal heat flux at the earth
surface is about Jz ≈ 0.1 J m−2 s−1. If we assume that the
temperature at the ice-rock interface is T1 and at the upper
ice-atmosphere surface is T0, and if a steady state temperature
profile prevails, then the heat current Jz = κ(T1 − T0)/h, where
κ ≈ 2 J m−1 s−1 K−1 is the thermal conductivity of ice. Using
Jz = 0.1 J m−2 s−1, this gives a temperature difference of
T1 − T0 ≈ 50 ◦C. Thus, since the ice surface temperature
(say averaged over a year) is above T0 ≈ −50 ◦C, we predict
that the ice will melt at the ice-rock interface, and the tem-
perature will be equal to the ice melting temperature. In the
steady state, the melt water will flow in channels at the ice-
rock interface and remove thermal energy at such a rate that
the total energy is conserved. In addition to the geothermal
energy flux, frictional energy dissipation will occur at the slid-
ing ice-rock interface and contribute to a heat current of similar
magnitude as the geothermal one (the frictional heat current
τfv ≈ 0.03–0.3 J m−2 s−1).

For perfectly smooth surfaces, when the ice temperature is
at the ice melting temperature, one expects a extremely small
frictional shear stress since even a nanometer of water film
between the ice and the countersurface results in a frictional
shear stress τf = ηv/d ≈ 1 Pa, which is a factor of ∼105 times
smaller than typically observed for glaciers.12 Here we have
used the water viscosity η ≈ 0.001 Pas and sliding speed
v ≈ 10−6 m/s. The actual shear stress is determined by
the surface roughness of the rockbed and will be discussed
below.

When ice is deformed rapidly with small strain, it responds
as an elastically stiff solid with Young’s modulus E of order
several GPa. When the strain reaches a large enough value,
ice deforms plastically.13 The strain and stress at the onset of
plastic flow depend on the deformation speed or strain rate.
For a small strain rate, experiments have shown that to a good
approximation, the stress-strain rate relation (Glen’s law, see
Ref. 14) is

ε̇ ij = Aτn−1τij, (1)

where ε ij and τij are the deviatoric strain and stress, respec-
tively, and 2τ2 = τijτij (summation over repeated indices
is implicitly understood). At the melting point of ice,

A ≈ 2.4 × 10−24 Pa−3 s−1 and n ≈ 3. We can also write (1)
as

τij = 2ηε̇ ij,

where the (effective) viscosity

η =
1

2Aτn−1

or with ε̇2 = ε̇ ij ε̇ ij

η = 2−(n+1)/(2n)A−1/n ε̇ (1−n)/n (2)

depends on the strain rate as for a non-Newtonian (shear-
thinning) fluid. If the strain rate in an application takes some
particular value, one may approximately treat the viscosity
as strain-rate independent, as obtained from (2) for the rele-
vant strain rate. This approach is often used in applications to
glacier friction.

III. THEORY

Consider a viscoelastic solid (ice) with a flat surface
squeezed against a rigid solid (rock) with a randomly rough
surface. We assume a small slope approximation, i.e., the root-
mean-square slope of the rough surface is much smaller than
unity. Assume that the solids move with the relative lateral
speed v, and consider that the system is in a reference frame
where the lower solid moves with the velocity v, while the
center of mass of the viscoelastic solid is stationary. The ice
at the interface with the rock will melt due to pressure melt-
ing. If we assume that the melt water is able to get removed
(squeezed-out) from the ice-rock contact regions, then the nor-
mal velocity at the ice-rock interface must equal the melt front
velocity which we denote with ẇ(x, t) (see Fig. 2). Thus,
the bottom surface of the upper solid (ice) has the normal
displacement

uz(x, t) = h(x − vt) + w(x, t).

If we define the Fourier transform

f (q,ω) =
1

(2π)3

∫
d2xdt f (x, t)e−i(q ·x−ωt),

we get
uz(q,ω) = h(q,ω) + w(q,ω), (3)

FIG. 2. An ice block (semi-infinite solid) sliding on a rigid solid with a
randomly rough surface. A thin water film separates the solids.



234701-3 B. N. J. Persson J. Chem. Phys. 149, 234701 (2018)

where h(q, ω) = h(q)δ(ω − q·v). If we assume the stress
σzz(q, ω) act on the bottom surface of the ice, then

Mzz(q,ω)σzz(q,ω) = uz(q,ω), (4)

where for a linear viscoelastic solid at low frequencies,9

Mzz(q,ω) = −
2(1 − ν2)

E(ω)q
(5)

Combining (3) and (4) gives

Mzz(q,ω)σzz(q,ω) = h(q,ω) + w(q,ω). (6)

We assume that the thickness of the boundary layer
between the two solids increases due to pressure melting and
decreases due to refreezing, but we treat it as an external film
in what follows. Let T1(x, z, t) refer to the temperature in the
ice and T2(x, z, t) in the rock. When the film makes a tran-
sition from fluid to solid, the heat per unit surface area and
unit time given off is Lẇ, where L is the latent heat per unit
volume of ice. Similarly when the ice melts, the energy Lẇ
is adsorbed per unit surface area and unit time. This energy
acts as a (positive or negative) heat source Q̇(x, t) = Lẇ at the
interface between the two solids. The heat flow in the solids
satisfies

∂T
∂t
− D∇2T = 0.

We assume that the boundary film is very thin so that the
temperature at the interface between the ice and the rock is
continuous (T1 = T2). Energy conservation gives the sec-
ond boundary condition κ1dT1/dz − κ2dT2/dz = Q̇. Using
the equations above, we get the temperature in the boundary
film,

T (q,ω) =
−L(−iω)
κ1γ1 + κ2γ2

w(q,ω),

where

γ1 =
(
q2 − iω/D1

)1/2

and similar for γ2. Here D1 = κ1
/
ρ1CV1, where κ1, ρ1, and CV 1

are the thermal conductivity, mass density, and heat capacity
of the ice respectively. In a similar way, the heat diffusivity D2

of the rock is defined.
If the temperature T is measured relative to the (average)

melting point temperature, we can write the temperature in
the boundary film as T = −Sp, where p = σzz is the pressure
(relative to the average pressure) at the bottom surface of the
ice. Thus, we get

N(q,ω)σzz(q,ω) = −w(q,ω), (7)

where

N(q,ω) =
S(κ1γ1 + κ2γ2)

iωL
. (8)

Using (6) and (7) gives

M̄zz(q,ω)σzz(q,ω) = h(q,ω), (9)

where

M̄zz(q,ω) = Mzz(q,ω) + N(q,ω). (10)

Thus, the only role of the (water) boundary film on the contact
mechanics is to renormalize the coupling between the normal
stress and the displacement at the ice-rock interface. Using (5),
(8), and (10), we can write

M̄zz(q,ω) = −
2(1 − ν2)

E(ω)q

[
1 +

S(κ1γ1 + κ2γ2)E(ω)q

(−iω)2(1 − ν2)L

]
. (11)

We assume a Maxwell model for the rheological proper-
ties of ice.15,16 Thus, the shear modulus is (see Fig. 3)

1
G(ω)

=
1

G0
+

1
(−iω)η

,

where the low-strain and high-frequency shear modulus is G0

≈ 1 GPa and the (effective) viscosity at the melting point of ice
is η ≈ 3× 1013 Pas. In earlier studies of glacier sliding friction,
the elastic response of the ice (the G0-term) was neglected.
Glaciers usually slide at very low velocities, but, at least in
the absence of regelation, the bedrock roughness with a large
wavenumber q (or short wavelength) gives rise to high per-
turbing frequencies, ω ≈ qv , where the ice respondence could
be elastic rather than viscous. Including the G0-term in G(ω)
will indicate at which slip velocities, the elastic response may
matter (see Sec. IV).

Using E = 2(1 + ν)G, we get

1
E(ω)

=
1

E0
+

1
(−iω)2(1 + ν)η

. (12)

If we consider very low frequencies so that E0 � ωη and
q2 � ω/D (so that γ1 ≈ γ2 ≈ q), we get from (11) and (12)

M̄zz(q,ω) =
(1 − ν2)

iω(1 + ν)ηq


1 +

(
q
q∗

)2
,

where

q2
∗ =

2(1 − ν2)L
S(κ1 + κ2)2(1 + ν)η

.

Defining the average thermal conductivity κ = (κ1 + κ2)
/
2 and

assuming incompressible system (ν = 0.5), we get

M̄zz(q,ω) =
1

2iωηq


1 +

(
q
q∗

)2
, (13)

q2
∗ =

L
4Sκη

. (14)

In Ref. 9, I have shown that for the case the surface
displacement of a viscoelastic solid is related to the surface
stress with a relation of the form (4), the frictional shear stress
is

τf =

∫
d2q qxC(q)P(q)S(q)Im

[
M̄zz(q, qxv)

]−1
, (15)

where17,18

S(q) = γ + (1 − γ)P2(q), (16)

FIG. 3. Simple rheology model of ice.
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where γ ≈ 0.4 and

P(q) = erf

(
1
2

G−1/2(q)

)
, (17)

with

G(q′) =
1
2

∫
q0<q<q′

d2q C(q)��p0M̄zz(q, qxv)��−2, (18)

where p0 is the nominal squeezing pressure at the interface
between the two solids (here ice and bedrock). The surface
roughness power spectrum is19–21

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq ·x, (19)

where 〈. . .〉 stands for ensemble averaging. We have assumed
〈h(x)〉 = 0. For surfaces with roughness with isotropic sta-
tistical properties, the power spectrum depends only on the
magnitude q = |q| of the wavevector. The integral in (15) is for
q0 < q < q1, where the small and large wavenumber cutoffs,
q0 and q1, depend on the system under consideration. Thus,
in the present case, q0 is determined by the thickness of the
ice layer, q0 = 2π/h. The large wavenumber cutoff could be
q1 = 2π/d, where d is an atomic distance, or the length scale
where the continuum description of the mechanical properties
of the solids break down. However, in the present case, there is
an effective cutoff determined by the regelation process which
results in d of order a few mm (see Sec. IV). The integral (18)
is between q0 < q < q′.

Sometimes the surface topography is measured along a
straight line rather than over a square surface area. In this case,
one can calculate the one-dimensional (1D) surface roughness
power spectrum

C1D =
1

2π

∫
dx 〈h(x)h(0)〉e−iqx. (20)

For surfaces with roughness having isotropic statistical prop-
erties, it is easy to obtain the 2D power spectrum C(q) from
the 1D power spectrum.10,19

Assuming p0 so large that complete contact occurs (no
cavitation) P = S = 1, we get from (13) and (15)

τf =

∫
d2q C(q)

2ηvq2
x q

1 + (q/q∗)2
. (21)

This limiting case agrees with the result derived by Nye5 and
Kamb.7

IV. NUMERICAL RESULTS

When sliding at high enough sliding speed, surface sepa-
ration occurs in some fraction of the nominal contact region.
The non-contact regions are usually referred to as cavities.
Depending on the situation, the cavities can be filled with air
(but rather unlikely situation), or with pressurized water. In
the latter case, some part of the weight of the ice glacier will
be carried by the pressurized water. We consider these two
situations separately.

We assume that the ice can be described using the Maxwell
rheological model where the viscoelastic modulus is given
by (12). We choose the viscosity η = 3 × 1013 Pas and
E0 = 3 GPa or E0 = ∞. We also need information about the
bedrock surface roughness. We assume that the bedrock is ran-
domly rough in which case the surface roughness power spec-
trum contains all the statistical information about the surface
topography.

A. Bedrock surface roughness power spectrum

Figure 4 shows the one-dimensional (1D) power spec-
trum as a function of the wavenumber (log-log scale) of a
glacier bedrock surface obtained from measurements22 of the
surface topography at two different locations (a) and (b). The
solid lines are along the glacier sliding direction, and the dots
are orthogonal to the sliding direction. The dashed line corre-
sponds to a self-affine fractal surface with the Hurst exponent
H = 2 (fractal dimension Df = 2), and the dotted line corre-
sponds to H = 0.8 (or Df = 2.2). The Hurst exponent ≈0.8
is typical for many surfaces such as surfaces produced by
fracture or grinding. The root-mean-square roughness is about
0.1 m.

In the following calculations, we have used the 2D power
spectra shown in Fig. 5. This power spectra correspond
to surfaces with self-affine fractal properties with the root-
mean-square (rms) roughness 0.1 m and the Hurst exponent

FIG. 4. The one-dimensional (1D) surface roughness power spectrum C1D(q)
as a function of the wavenumber (log-log scale) of a glacier bedrock surface
obtained from measurements of the surface topography at two different loca-
tions (a) and (b). The solid lines are along the glacier sliding direction, and
the dots are orthogonal to the sliding direction. The dashed line corresponds
to a self-affine fractal surface with the Hurst exponent H = 2 (fractal dimen-
sion Df = 2), and the dotted line corresponds to H = 0.8 (or Df = 2.2). The
Hurst exponent ≈0.8 is typical for many surfaces such as surfaces produced
by fracture or grinding. Adapted from Ref. 22.
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FIG. 5. The 2D surface roughness power spectra as a function of the
wavenumber (log-log scale) for a surface with self-affine fractal properties
with the Hurst exponent H = 1 (red line) and H = 0.8 (green line). The
power spectra correspond to the surface root-mean-square (rms) roughness
0.1 m and the rms slope 0.043 and 0.125, respectively. The smallest and
largest wavenumbers are denoted q0 and q1, respectively. In the present
case, q0 = 0.1 m−1 and q1 = 103 m−1, corresponding to the wavelength
λ0 = 2π/q0 ≈ 63 m and λ1 ≈ 0.63 cm, respectively.

H = 1 (red line) and H = 0.8 (green line). The rms slopes of the
corresponding surfaces are 0.043 and 0.125, respectively. The
1D power spectra for these surfaces are similar to the power
spectra in Fig. 4.

B. Airfilled cavities

We first present numerical results for the frictional shear
stress as a function of the sliding speed at the glacier bedrock
interface, assuming air-filled cavities. In Fig. 6, we show the
(nominal) frictional shear stress (a) and the relative contact
area (b) as a function of the logarithm of the sliding speed. We
have used the latent heat L = 3 × 108 J m−3, the mean thermal
conductivity κ = 2 J m−1 K−1 s−1, and S = 7 × 10−8 KPa−1,
and the Maxwell rheological model for the ice with η = 1013

Pas and E0 = 3 GPa (dashed lines) and E0 = ∞ (solid lines).
We have assumed that the nominal contact pressure p0 = 10
MPa acts at the bottom surface of the ice, corresponding to the
weight of an ≈1000 m thick ice layer.

Figure 7 shows the (nominal) frictional shear stress as a
function of the logarithm of the upper cut-off wavenumber q1

for the sliding speed v = 10−6 m/s. We show results for the
two power spectra shown in Fig. 5 corresponding to H = 1
(red line) and H = 0.8 (green line). We have used the Maxwell
rheological model for the ice with η = 1013 Pas and E0 = ∞,
but as shown in Fig. 6, the same result prevails for E0 = 3 GPa
at this sliding speed.

Note that for H = 1, including roughness at larger
wavenumbers than q1 = 103 m−1 does not increase the frictional
shear stress. This is due to the regelation which effectively
removes the viscoelastic contribution to the friction from the
short wavelength roughness. Thus, instead of deforming vis-
coelastically in response to the short wavelength roughness,
the ice locally melts and refreezes, which effectively elimi-
nates the viscoelastic deformations at a short enough length
scale. The same is true for H = 0.8, but here the effective
cutoff is shifted to a slightly larger wavenumber. This effect
is caused by the fact that decreasing the Hurst exponent (but
keeping the rms-roughness amplitude fixed) results in surfaces

FIG. 6. The (nominal) frictional shear stress (a) and the relative contact area
(b) as a function of the logarithm of the sliding speed. We have used the latent
heat L = 3 × 108 J m−3, the mean thermal conductivity κ = 2 J m−1 K−1 s−1,
and S = 7 × 10−8 KPa−1. We have used the Maxwell rheological model for
the ice with η = 1013 Pas and E0 = 3 GPa (dashed lines) and E0 = ∞ (solid
lines).

with an increasing amplitude of the large wavenumber (or
short wavelength) roughness, which are harder to remove by
regelation.

C. Waterfilled cavities

We assume that the non-contact regions (cavities) are
filled with pressurized water. We assume that the water pres-
sure pw is the same everywhere in all the cavities at the ice-rock
interface. We take into account the water pressure in a mean

FIG. 7. The (nominal) frictional shear stress as a function of the logarithm
of the upper cut-off wavenumber q1 for the sliding speed v = 10−6 m/s. We
show results for the two power spectra shown in Fig. 5 corresponding to
H = 1 (red line) and H = 0.8 (green line). We have used the latent heat L = 3
× 108 J m−3, the mean thermal conductivity κ = 2 J m−1 K−1 s−1, and S = 7
× 10−8 KPa−1. We have used the Maxwell rheological model for the ice with
η = 1013 Pas and E0 =∞.
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field manner by assuming that the squeezing pressure is given
by p0 − pw(A0 − A)/A0, i.e., we reduce the load p0A0 given
by the weight of the ice with the upward acing fluid pressure
force pw(A0 − A). Here A is the (projected) ice-rock contact
area and A0 is the nominal contact area, i.e., the surface area
of the bottom surface of the ice projected on the xy-plane.

Figure 8 shows the (nominal) frictional shear stress (a) and
the fraction of the total load carried by the water (b) as a func-
tion of the logarithm of the sliding speed. As expected, when
the water pressure in the cavities increases, the frictional shear
stress decreases and the fraction of the total load carried by the
water increases. When the water pressure increases toward the
nominal contact pressure p0, caused by the weight of the ice,
lift-off occurs where the ice is floating on a water layer and the
frictional shear stress vanishes.

In the calculation above, we have assumed that the water
pressure pw is the same everywhere as expected if all the
cavities are interconnected and the viscous pressure drop asso-
ciated with fluid flow is negligible. If the water at the ice-rock
interface is connected by water filled channels (e.g., cracks)
to the upper surface of the ice block, then the water pres-
sure at the ice-rock interface will be equal to the nominal
pressure p0 resulting from the weight of the ice (or slightly
more because of the larger mass density of water than of ice).
In this case, lift-off would occur where the friction would
nearly vanish and where the ice block (glacier) could slip with
“high” speed downhills. This type of rapid motion has been
observed.

FIG. 8. The (nominal) frictional shear stress (a) and the fraction of the total
load carried by the water (b) as a function of the logarithm of the sliding speed.
We have used the latent heat L = 3× 108 J m−3, the mean thermal conductivity
κ = 2 J m−1 K−1 s−1, and S = 7 × 10−8 KPa−1. We have used the Maxwell
rheological model for the ice with η = 1013 Pas and E0 = 3 GPa (dashed lines)
and E0 =∞ (solid lines).

V. DISCUSSION

In the model calculation above, we have used the Maxwell
rheology model. In the model a small strain (and high strain
rate) ice Young’s modulus E0 occurs. However, this description
of ice rheology is only valid as long as the strain is very small,
which is, in general, not the case in our applications. Thus, for
large strain (and large strain rate), ice may fracture in a brittle
manner, or undergo plastic deformation of a type which cannot
be described by Glen’s law (1). (In the present case, brittle
fracture may be not important due to the large hydrostatic
pressure at the ice-rock interface.) Nevertheless, including E0

indicates the range of sliding speeds where the rheology may
be properly described by the effective viscosity term alone in
the Maxwell rheology expression for E(ω). Thus, Figs. 6 and 8
show that only for sliding speeds v > 10−5 m/s does the E0 term
become important, and these high sliding speeds are usually
not observed for the motion of glaciers.

The assumption made above that the water pressure at
the ice-rock interface is constant everywhere is unlikely to be
accurate in general. The water pressure depends on the size
and distribution of flow channels at the interface. This is a
very complex topic as the flow channels depend on the ice
melting in response to frictional heating (and the geothermal
heat current). Thus, the theories23 which have recently been
developed for the leakage of seals cannot be directly applied
to the interfacial fluid flow problem for glaciers. In particular,
the observation that for randomly rough surfaces, the area of
contact percolates [and the fluid flow (leakage) vanishes] when
the relative contact area is ≈42% of the nominal contact area24

has probably no relevance for the flow of water at the ice-rock
interface of glaciers.

The theory above includes cavitation. The multiscale con-
tact mechanics theory used above has been tested in the
past by comparing to exact numerical simulations,25 and the
results never deviate with more than ≈20% from the simula-
tion results. However, in the present case, there is an additional
effect, namely, regelation, which was not included in the earlier
studies and which may complicate the situation. More studies
are needed to test the influence of regelation on the cavitation
process.

One contribution to the glacier friction will be the friction
between stone fragments which are embedded in the ice at the
ice-bedrock interface. These stone fragments will slide with
the ice and give a stone-stone sliding friction contribution to the
glacier friction. In addition, it will polish or grind the bedrock
surface in a similar way as the action of sandpaper. This wear
process may determine the (short and medium wavelength)
roughness of the bedrock.

In Ref. 6, Nye argued that the surface roughness power
spectrum of the bedrock should scale with the wavenumber
as C(q) ∼ q−4 (or ∼q−3 for the 1D power spectrum). Since
for a self-affine fractal surface, C(q) ∼ q−2(1+H ), this corre-
spond to the Hurst exponent H = 1 (and the fractal dimension
Df = 3 − H = 2). Such a surface has the scaling property
that if some region is magnified, the roughness observed looks
the same as the roughness at a larger length scale, i.e., the
ratio between the amplitude and the wavelength does (on the
average) not change. We now know this is, in general, not
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the case although some surfaces, e.g., sandblasted surfaces,
typically have H ≈ 1 (see Ref. 21). Surfaces prepared by frac-
ture (crack propagation) or by grinding (or polishing) tend
to have the Hurst exponent H ≈ 0.7 − 0.8 (fractal dimension
Df ≈ 2.2− 2.3). This appears to be the case also for the rockbed
of glaciers (see Fig. 4). For such surfaces, the ratio between
the amplitude and the wavelength of the surface roughness
increases as the wavelength decreases.

It is interesting to consider testing the theory presented
above in the laboratory. We have shown above that regela-
tion removes the contribution to the friction from the surface
roughness components with wavelengths smaller than ≈6 cm
when the Hurst exponent is equal to H = 1 and ≈6 mm when
H = 0.8. Clearly, ice sliding friction studies on sandblasted
surfaces (which typically have H ≈ 1) are not interesting
as such surfaces have only short-wavelength roughness (with
wavelength typically lower than ≈1 mm). However, surfaces
produced by fracture (crack propagation) of granite blocks will
have roughness extending to the linear size of the block and
typically with the Hurst exponent H ≈ 0.8. If rectangular ice
blocks with the linear dimension of order 10–30 cm are slid on
such surfaces at the ice melting temperature, it should be pos-
sible to test the theory predictions at least in an approximate
way.

VI. SUMMARY AND CONCLUSION

I have presented a theory for ice friction for ice sliding
on a hard randomly rough surface which includes ice melting-
freezing (regelation), viscoelastic energy dissipation, and cavi-
tation. The theory is an extension of earlier work by Weertman,
Lliboutry, Nye, and Kamb. I have presented numerical results
for surfaces with realistic surface roughness power spectra.
I have considered both airfilled and (pressurized) waterfilled
cavities. The calculated frictional shear stresses are consistent
with experimental observations for temperate glaciers.

ACKNOWLEDGMENTS

I thank Angelika Humbert (Alfred-Wegener-Institut für
Polar- und Meeresforschung, Bremerhaven) for drawing my
attention to the fascinating topic of glacier friction and for
interesting discussions. I also thank J. F. Nye for useful
comments on the manuscript and discussions.

1C. J. Van Der Veen, L. A. Stearns, J. Johnson, and B. Csatho, “Flow dynamics
of byrd glacier, east Antarctica,” J. Glaciol. 60, 1053 (2014).

2P. W. Thorp, “Surface profiles and basal shear stresses of outlet glaciers
front a Late-glacial mountain ice field in western Scotland,” J. Glaciol. 37,
77 (1991).

3J. Weertman, “On the sliding of glaciers,” J. Glaciol. 3, 33 (1957).
4L. Lliboutry, “General theory of subglacial cavitation and sliding of
temperate glaciers,” J. Glaciol. 7, 21 (1968).

5J. F. Nye, “A calculation on the sliding of ice over a wavy surface using a
Newtonian viscous approximation,” Proc. R. Soc. A 311, 445 (1969).

6J. F. Nye, “Glacier sliding without cavitation in a linear viscous approxima-
tion,” Proc. R. Soc. A 315, 381 (1970).

7B. Kamb, “Sliding motion of glaciers: Theory and observation,” Rev.
Geophys. Space Phys. 8, 673, https://doi.org/10.1029/rg008i004p00673
(1970).

8J. Weertman, “The unsolved general glacier sliding problem,” J. Glaciol.
23, 97 (1979).

9B. N. J. Persson, “Theory of rubber friction and contact mechanics,”
J. Chem. Phys. 115, 3840 (2001).

10G. Carbone, B. Lorenz, B. N. J. Persson, and A. Wohlers, “Contact
mechanics and rubber friction for randomly rough surfaces with anisotropic
statistical properties,” Eur. Phys. J. E 29, 275 (2009).

11B. N. J. Persson, “Contact mechanics for randomly rough surfaces,” Surf.
Sci. Rep. 61, 201 (2006).

12B. N. J. Persson, “Ice friction: Role of non-uniform frictional heating and
ice premelting,” J. Chem. Phys. 143, 224701 (2015).

13See, e.g., Sec. 14.2 in, B. N. J. Persson, Sliding Friction: Physical Principles
and Applications (Springer, Heidelberg, 2000).

14J. W. Glen, “The creep of polycrystalline ice,” Proc. R. Soc. London, Ser.
A 228, 519 (1955).

15G. H. Gudmundsson, “Ice-stream response to ocean tides and the form of
the basal sliding law,” Cryosphere 5, 259 (2011).

16J. Christmann, C. Plate, R. Müller, and A. Humbert, “Viscous and viscoelas-
tic stress states at the calving front of Antarctic ice shelves,” Ann. Glaciol.
57, 10 (2016).

17M. Scaraggi and B. N. J. Persson, “Friction and universal contact area law
for randomly rough viscoelastic contacts,” J. Phys.: Condens. Matter 27,
105102 (2015).

18A. Almqvist, C. Campana, N. Prodanov, and B. N. J. Persson, “Interfacial
separation between elastic solids with randomly rough surfaces: Compari-
son between theory and numerical techniques,” J. Mech. Phys. Solids 59,
2355 (2011).

19P. R. Nayak, “Random process model of rough surfaces,” J. Lubr. Technol.
93, 398 (1971).

20B. N. J. Persson, O. Albohr, U. Tartaglino, A. I. Volokitin, and E. Tosatti,
“On the nature of surface roughness with application to contact mechanics,
sealing, rubber friction and adhesion,” J. Phys.: Condens. Matter 17, R1
(2005).

21B. N. J. Persson, “On the fractal dimension of rough surfaces,” Tribol. Lett.
54, 99 (2014).

22B. Hubbard, M. Siegert, and D. McCarroll, “Spectral roughness of glaciated
bedrock geomorphic surfaces: Implications for glacier sliding,” J. Geophys.
Res.: Solid Earth 105, 21295, https://doi.org/10.1029/2000jb900162 (2000).

23B. Lorenz and B. N. J. Persson, “Leak rate of seals: Effective-medium theory
and comparison with experiment,” Eur. Phys. J. E 31, 159 (2010).
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