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3ITMO University, Kronverskiy pr. 49, 197101 Saint-Petersburg, Russia
4Department of Mechanical and Industrial Engineering (MTP), Norwegian University of Science and Technology,
Richard Birkelandsvei 2B, N-7491 Trondheim, Norway
5Sanofi, 13, quai Jules Guesde, BP 14, 94403 Vitry sur Seine Cedex, France

(Received 11 February 2018; accepted 30 May 2018; published online 21 June 2018)

We study the adhesion between differently processed glass and filled bromobutyl rubber in dry con-

ditions, in water, and in silicone oil. The boundary line between contact and non-contact in adhesion

experiments can be considered as a mode I crack, and we show that viscoelastic energy dissipation,

close to the opening (or closing) crack tip and surface roughness, strongly affects the work of adhe-

sion. We observe strong adhesion hysteresis and, in contrast to the Johnson–Kendall–Roberts theory

prediction for elastic solids, this results in a pull-off force (and work of adhesion) which depends

on the loading force and contact time. In particular, for the system immersed in water and silicone

oil, we register very weak adhesive bonding. For glass ball with baked-on silicone oil, the pull-off

force is nearly independent of the contact time, but this is not observed for the unprocessed glass

surface. Published by AIP Publishing. https://doi.org/10.1063/1.5025605

I. INTRODUCTION

In our everyday practice, most of the contacts mani-

fest rather weak adhesion.1,2 However, sometimes adhesion

becomes an issue. For instance, clean smooth glass surfaces

can exhibit strong adhesion against (smooth) rubber surfaces.

Thus, in applications involving rubber in contact with glass,

it is often necessary to “passivate” the glass surface, e.g., by

siliconisation. One such example is syringes where a rubber

stopper must be able to slide with low stable friction against

a barrel made from glass.3,4 The rubber-glass interface is usu-

ally lubricated with silicone oil. However, during a long period

of stationary contact, the silicone oil is squeezed out from the

rubber-glass asperity contact regions, resulting in a high break

loose friction force. In addition, when the syringe is filled with

water (with additives), the silicone oil film may be unstable and

break up into small droplets (spherical cups). In this case, the

rubber stopper can be exposed to bare glass in some contact

areas, resulting in a high sliding friction. This can be avoided

if silicone oil molecules are chemically attached to the glass

surface, which is possible using heat treatment of the (silicone

oil covered) glass barrel.

The siliconisation of the syringe barrel is an extremely

important aspect of the production of sterile, prefillable glass

syringes. Both inadequate and excessive siliconisation can

cause problems in this connection.5 One option for minimizing

the amount of free silicone oil in a syringe is the thermal fixa-

tion of the silicone oil on the glass surface in a process called

baked-on siliconisation. Usually the silicone oil is applied as

an emulsion and then annealed at the temperature ≈300 ◦C.

a)URL: www.MultiscaleConsulting.com.

This creates a permanent hydrophobic anti-friction coating

due to the formation of stable covalent bonds between the

glass surface and the silicone oil.

The tribology of the contact between glass and rubber

has been studied in the pioneering work of Roberts6 and

of McClune and Briscoe.7 Here, smooth rubber surfaces

were squeezed against glass in a fluid while being optically

observed. It was shown that the flexible rubber resulted in

entrapment of liquid by elastic deformation. The removal of

fluid (water) between rubber and glass surfaces depends on

the wetting properties of the interface, as shown by Roberts

and Tabor in Refs. 8 and 9. In the work of Koenen et al.,10,11

the rubber-glass wiping problem was studied experimentally.

They showed that the stick-slip motion and related squeal noise

occurred in a narrow range of sliding speeds and loads, which

is complicated by capillary adhesion effects that can induce

higher friction than in the dry environment.

In this paper, we study the adhesion between “clean” and

siliconised glass balls (radius R) and a flat rubber surface. The

relation between adhesion and sliding friction is not trivial,

but it is clear that some phenomena such as fluid squeeze-

out and interfacial aging of the contact should manifest itself

in both the adhesion and friction. Thus, the increase in the

break loose friction force with the time of stationary contact

depends on fluid squeeze-out, dewetting, and bond-formation

between the two solids, all of which also influence the adhesive

interaction between the solids which can be probed in pull-off

experiments. The nature of the break loose friction has been

studied in Refs. 12–14 for glass surfaces covered by silicone

oil but not for surfaces with baked-on silicone oil.

The contact between a spherical ball and a flat consti-

tutes the simplest and most well-defined contact mechanics

problem. For elastically soft solids, and with large radius
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R, the Johnson–Kendall–Roberts (JKR)15–18 theory is valid.

This theory predicts the pull-off force Fc = (3π/2)wR, where

w = wopen(v) is the work of adhesion or, more accurately, the

energy (per unit surface area) to propagate an opening crack

at the speed v (where v is the crack tip speed at the point of

the pull-off instability). In the adiabatic limit (i.e., infinitesi-

mally low pull-off velocity), w is equal to the change in the

interfacial free energy ∆γ = γ1 + γ2 − γ12 (where γ1, γ2, and

γ12 are the solid-vapor interfacial energies of solids 1 and 2,

and the interfacial energy of the contact between solids 1 and

2, respectively).

Adhesion mechanics of real objects is a complex phe-

nomenon and is only partly understood,19–28 especially for soft

materials with viscoelastic and non-linear properties.29,30 The

work of adhesion during pull-off is strongly influenced by two

competing effects: non-adiabatic effects, in particular the vis-

coelastic energy dissipation in the vicinity of the opening crack

tip31,32 (which may strongly increase the work of adhesion)

and the surface roughness which usually reduces the work of

adhesion.33,34 We note that the boundary line between contact

and non-contact in JKR adhesion experiments can be consid-

ered as a mode I crack even if the material on the two sides

are different (see, e.g., Ref. 35). The non-adiabatic effects also

often result in an adhesion force which is much smaller during

approach than during pull-off, an effect referred to as adhe-

sion hysteresis. The effect of surface roughness is considered

separately in Refs. 33 and 36–41.

In the present study, we consider the adhesion between

bromobutyl rubber and smooth glass surfaces. We consider

both dry condition, and in water and in silicone oil. In Sec. II

and Appendixes A–C, we present the material properties,

namely, the viscoelastic modulus of the rubber, viscoelastic

stress and strain relaxation, contact angles and surface ener-

gies, and the surface roughness power spectrum of the rubber

surface. In Sec. III, we present the results of contact mechan-

ics calculations which form the basis for the analysis of the

experimental adhesion data presented in Sec. VI. Section IV

discusses viscoelastic crack propagation at the rubber–glass

interface. In Sec. V, we present the optical pictures of the con-

tact between a smooth glass surface and the bromobutyl rubber,

which illustrates some important aspects of contact hystere-

sis. In Sec. VI, we consider adhesion between the rubber and

glass balls in the dry state, in water, and in silicone oil. Sec-

tion VII contains the summary and conclusion. Appendixes

A–J present details related to material properties and some

calculations.

II. MATERIAL PROPERTIES AND SURFACE
TOPOGRAPHY

A. Viscoelastic modulus

The viscoelastic properties of rubber are needed for con-

tact mechanics or adhesion calculations and for calculating

the velocity dependency of the adhesive crack propagation,

e.g., during pull-off. For adhesion study, it is necessary to

have information about the complex elastic modulus over a

rather large frequency range, as well as at different strain

values sometimes (on rough surfaces) including very large

strain of order 100%. A standard way of measuring the

viscoelastic modulus is to oscillatory deform the rubber sam-

ple with a constant strain or stress amplitude. This is done at

different frequencies and then repeated at different tempera-

tures. The results measured at different temperatures can be

time-temperature shifted to form a master curve at a chosen

reference temperature, covering a broad range of frequen-

cies. In Appendix A, we summarize the results obtained for

the filled bromobutyl rubber compound used in the adhesion

studies.

B. Viscoelastic stress and strain relaxation

We have performed stress and strain relaxation experi-

ments for the bromobutyl rubber compound. In Fig. 1, we show

the time dependency of the relaxation modulus E(t) in units of

the relaxation modulus at time t0 = 10 s. The green curve is the

stress relaxation modulus E(t) = σ(t)/ǫ0, where ǫ0 = 0.1 is the

strain imposed at time t = 0 and σ(t) is the resulting stress at

time t. The solid red curve is the strain relaxation modulus E(t)

= σ0/ǫ(t), where σ0 = 0.4 MPa is the stress imposed at time

t = 0 and ǫ(t) is the resulting strain at time t. The red dashed

curve is the strain relaxation modulus calculated from the low-

strain (0.04%) master curve E(ω) shown in Fig. 27. The stress

relaxation modulus obtained from the low-strain master curve

is nearly the same as the strain relaxation modulus (the dashed

red curve) and is not shown in the figure.

Note that the strain relaxation modulus obtained from the

small-strain measurement (strain amplitude 0.04%) initially

decays slower with time than the one obtained for large strain

(of order ∼10%), but for large time the opposite behaviors are

observed. The drop in E(t) from the large strain measurements

(solid lines) in the time interval of interest below (from ∼102

s to ∼105 s) is about ≈25%. The implication of this result for

the time dependency of the contact area and the pull-off force

will be discussed below.

C. Contact angles and surface energies

In order to study the adhesion in water and silicone oil, we

need to know the interfacial energies between the rubber and

glass and the two fluids, which can be estimated from contact

FIG. 1. The time dependency of the relaxation modulus E(t) of the rubber in

units of the relaxation modulus at time t0 = 10 s. The green curve is the stress

relaxation modulus E(t) = σ(t)/ǫ0, where ǫ0 = 0.1 is the strain imposed at

time t = 0 and σ(t) is the resulting stress at time t. The solid red curve is the

strain relaxation modulus E(t) = σ0/ǫ (t), where σ0 = 0.4 MPa is the stress

imposed at time t = 0 and ǫ (t) is the resulting strain at time t. The red dashed

curve is the strain relaxation modulus calculated from the low-strain (0.04%)

master curve E(ω) shown in Fig. 27.
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angle measurements. We have measured the contact angles

for water and silicone oil on the glass ball surface and on the

surface of the bromobutyl rubber. Using this information, we

have estimated the adiabatic work of adhesion between the

rubber and the glass surface, in the dry state, in water, and in

silicone oil. Here we summarize the most important results

(see Appendix B for details).

In the dry state for long contact time, the adhesive JKR

contact is characterized by the adiabatic work of adhesion (for

perfectly smooth surfaces) ∆γ = γ1 + γ2 − γ12. Assuming

that only dispersion forces are responsible for the interaction

between the glass and the bromobutyl rubber; in Appendix B,

we estimate the adiabatic work of adhesion ∆γ(dry) ≈ 0.08

− 0.1 J/m2. However, the experimental adhesion study pre-

sented below indicates that stronger bonds form between the

two surfaces and ∆γ ≈ 0.3 J/m2.

In a liquid, the adiabatic work of adhesion can be

calculated using the Young-Dupre equation

∆γ(wet) = ∆γ(dry) − γ(cos θgl + cos θrl), (1)

where γ is the liquid surface tension and θgl is the contact angle

of the liquid on glass and θrl is the contact angle of liquid on

the rubber. Using this equation with ∆γ(dry) ≈ 0.3 J/m2 gives

in water ∆γ(wet) ≈ 0.2 J/m2.

In Appendix B, we argue that the interaction potential

between a flat glass surface and a flat rubber surface in water

takes the form shown in Fig. 2 with a repulsive barrier before

the strong attraction due to direct rubber-glass bonds. That

is, at separation of order a few nanometers, the interaction is

only via dispersion forces and steric repulsion and is repul-

sive. At short separation, the interaction potential has a local

minimum corresponding to direct contact between the rubber

and the glass surface. In this state, bonding forces (of unknown

nature) stronger than the dispersion forces occur between the

surfaces.

When a bromobutyl rubber is squeezed in contact with

the glass surface in water, we expect first a rapid squeeze-out

(see Sec. III) until contact occurs between the rubber asper-

ities and the glass surface. However, at short contact time,

we do not expect any true atomic contact between the rubber

FIG. 2. The interaction potential between a flat glass surface and a flat rubber

surface in water as a function of the surface separation. At separation of

order a few nanometers, the interaction is only via dispersion forces and steric

repulsion and is repulsive. At short separation, the interaction potential has

a minimum corresponding to direct contact between the rubber and the glass

surface. In this case, bonding forces (of unknown nature) stronger than the

dispersion forces occur between the surfaces. Arbitrary units and schematic.

and the glass surface, but a water film of nanometer thickness

separates the surfaces in the asperity contact regions. How-

ever, this state is only metastable and after a long enough

time we expect true atomic contact to form between the rub-

ber and the glass surface in the asperity contact regions. This

dewetting transition involves the nucleation (by thermal fluc-

tuations) of the nanometer sized contact region followed by

the removal of the nanometer water film by a (mainly) surface-

energy driven squeeze-out process. Thus we expect the contact

area between the rubber and the glass surface to increase con-

tinuously with increasing contact time, as indeed observed (see

Sec. VI).

D. Rubber surface roughness

We have studied the rubber surface topography using an

optical method and atomic force microscopy (AFM). As shown

in Appendix C, the height probability distribution is nearly

Gaussian, with the root-mean-square (rms) roughness, when

measured over a surface area 1 mm × 1.4 mm, of about hrms

≈ 2.9 ± 0.1 µm and with the highest point ∼13 µm above

the average plane. In Appendix C, we also give the surface

roughness power spectrum which is needed for the adhesion

and fluid squeeze-out calculations.

III. THEORY: CONTACT AREA AND INTERFACIAL
SEPARATION

As a preparation for the analysis of the adhesion data to be

presented in Secs. V and VI, here we present some theoretical

predictions for the contact between the bromobutyl rubber and

smooth glass. We first study adhesion using the theory devel-

oped in Refs. 34 and 42, which accounts for the influence of

the surface roughness on work of adhesion and the contact

area. Next we calculate the time-dependent average interfacial

separation, and the area of real contact, during fluid squeeze-

out between a rubber block and the glass surface. The fluid

is assumed to be Newtonian, and we neglect the influence of

interfacial energies on the squeeze-out process, i.e., no dewet-

ting transition occurs. The calculations are performed using the

Reynolds equations for fluid flow, where the surface roughness

enters via flow factors, which are obtained using the Pers-

son contact mechanics theory and the Bruggeman effective

medium theory (see Ref. 43).

In the following, we will present results for the work of

adhesion and we will use the following notation. The adia-

batic work of adhesion for the rubber in contact with the glass

surface for perfectly smooth surfaces will be denoted by γ0

= ∆γ. We also refer to this as the interfacial binding energy

per unit surface area. For an opening crack, we denote the work

of adhesion (for perfectly smooth surfaces) by γopen(v) which

depends on the crack tip velocity v . Similarly, γclose(v) denotes

the work of adhesion for a closing crack. Note that γclose(v)

< ∆γ < γopen(v) and that as v → 0 we have γopen(v)→ ∆γ and

γclose(v) → ∆γ. For the surfaces with roughness, we denote

the adiabatic work of adhesion by w0 and the correspond-

ing opening crack and closing crack propagation energies by

wopen(v) and wclose(v). Note that wclose(v) < w0 < wopen(v) and

wopen(v) → w0 and wclose(v) → w0 as the crack tip velocity
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v → 0. In Secs. V and VI, we focus mainly on wopen(v) which

we often denote by w(v) or just w for simplicity.

A. Influence of surface roughness on the adhesion

In this section, we study the influence of surface rough-

ness on the contact between rubber and glass balls in the dry

state, and in water and in silicone oil. We assume infinite

long contact time so that viscoelastic effects, and other non-

adiabatic processes, are unimportant. In this limit, in the dry

state, the adhesive contact is characterized by the adiabatic

work of adhesion (for perfectly flat surfaces) ∆γ = γ1 + γ2

− γ12. In the case of adhesion in a liquid (here water or sil-

icone oil), we assume that the liquid pressure is everywhere

equal to the external pressure so the total load is carried by the

area of real contact. In a liquid, the adiabatic work of adhesion

can be calculated using the Young-Dupre equation (1).

We will now present calculated results for the adhesive

contact between the glass ball and the surface of the bro-

mobutyl rubber. Figure 3(a) shows the normalized area of real

contact, A/A0 (where A0 is the nominal contact area), as a

function of the nominal contact pressure (in MPa), without

adhesion (the green curve) and with adhesion (red and blue

curves). The rubber surface is assumed to have surface rough-

ness with the power spectrum shown in Fig. 32 (the dashed

line) and the Young’s modulus E = 2.5 MPa and Poisson ratio

ν = 0.5. The work of adhesion used for obtaining the red curve

is ∆γ = 0.1 J/m2, and that for the blue curve is ∆γ = 0.025

J/m2. These values for the work of adhesion are smaller than

FIG. 3. The (a) normalized area of real contact, A/A0 (where A0 is the nom-

inal contact area) and (b) the average surface separation, as a function of the

nominal contact pressure (in MPa), without adhesion (the green curve) and

with adhesion (red and blue curves) found from Persson’s theory. The rubber

surface is assumed to have surface roughness with the power spectrum shown

in Fig. 32 (the dashed line) and the Young’s modulus E = 2.5 MPa and the

Poisson ratio ν = 0.5. The work of adhesion used for obtaining the red curve

is ∆γ = 0.1 J/m2, and that for the blue curve is ∆γ = 0.025 J/m2.

the adiabatic value (which may be ≈0.3 J/m2), but during con-

tact formation the work of adhesion is reduced. Results for

∆γ = 0.3 J/m2 will be shown below.

Figure 3(b) shows the average surface separation as a

function of the nominal contact pressure with adhesion (∆γ

= 0.1 J/m2, the red curve) and without adhesion (the green

curve).

In contact mechanics for the rough surface with roughness

over many decades in length scales, the concept of magnifica-

tion is very important.42 When we study the interface at the

magnification ζ , we only observe the surface roughness with

wavenumber q < ζq0, where q0 is a reference wavenumber,

here chosen as q0 = 104 m−1, corresponding to the reference

length λ0 = 2π/q0 ≈ 0.6 mm. Physical quantities, such as the

contact area, depend on the magnification used when study-

ing the contact. For example, if ζ is small (of order 1) we

do not observe any surface roughness and it appears as if

the contact is complete, i.e., A/A0 ≈ 1. Figure 4 shows the

interfacial binding energy (or work of adhesion) (a) and the

normalized area of real contact (b), as a function of the loga-

rithm of the magnification ζ . Note that the work of adhesion w0

vanishes when ∆γ = 0.1 J/m2. In fact, the surface roughness

results in a vanishing work of adhesion for ∆γ < 0.25 J/m2

(not shown).

Figure 5 shows the (a) normalized area of real contact and

(b) the work of adhesion, as a function of the logarithm of the

magnification ζ when ∆γ = 0.3 J/m2. Note that w0(ζ = 1)

≈ 0.03 J/m2, which implies that there is a non-vanishing

FIG. 4. The (a) interfacial binding energy (or work of adhesion) and (b) the

normalized area of real contact, as a function of the logarithm of the mag-

nification ζ found from Persson’s theory. Note that for both ∆γ = 0.1 J/m2

(the red curve) and ∆γ = 0.025 J/m2 (the blue curve) w0(ζ = 1) = 0 which

implies that there is vanishing pull-off force in the adiabatic limit (infinitely

small pull-off velocity). For the same parameters as in Fig. 3.
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FIG. 5. The (a) normalized area of real contact and (b) the interfacial binding

energy (or work of adhesion), as a function of the logarithm of the mag-

nification ζ when ∆γ = 0.3 J/m2 found from Persson’s theory. Note that w0

(ζ = 1) ≈ 0.03 J/m2, which implies that there is a non-vanishing pull-off force.

pull-off force. Here we note that in reality strong adhesion hys-

teresis occurs that will be discussed in more detail in Sec. V.

Thus, during contact formation for short contact time, the

interfacial binding energy nearly vanishes, while it is strongly

enhanced during pull-off. Figure 3 shows that if the nomi-

nal contact pressure p0 ≈ 0.1 MPa, for relatively short times

where adhesion can be neglected, A/A0 ≈ 0.1. However, after

very long time, the interfacial binding energy will approach

the adiabatic interfacial binding energy, γ ≈ 0.3 J/m2, and, in

this case from Fig. 5 for p0 ≈ 0.1 MPa, we expect A/A0 ≈ 0.9.

Thus we expect the contact area to increase slowly with time

from a relative small value, of order A/A0 ≈ 0.1, to a value

close to complete contact for very long contact times.

Another very important implication of adhesion hysteresis

is the following: during removal of the loading force, the con-

tact area will not drop to zero but will stay nearly unchanged.

The reason is that for the opening crack (crack tip veloc-

ity v) the interfacial binding energy γopen(v) ≫ ∆γ unless v

is extremely small so that the decrease in the contact area

with increasing time after removing the load is so slow that

it can be neglected on the time scale of practical importance.

If the contact area is unchanged, we also expect only a rela-

tive small increase in the average interfacial separation when

the load is removed. For contact in fluids (water and silicone

oil), we also observe (a weak) adhesion and the results pre-

sented in Sec. VI indicate that in these cases too the contact

area and the average interfacial separation change rather lit-

tle when the load is reduced from the maximum (where the

nominal contact pressure is about 0.1 MPa) to zero. Opti-

cal pictures of the contact in water (see Sec. VI) support this

claim.

B. Fluid squeeze-out

We will show that the viscous forces in silicone oil (and

hence also in water) have a negligible influence on the adhesion

except in a short time period around detachment. Let us first

estimate the typical contact pressures in the applications below.

The maximum applied normal forces used below are of order

F = 0.1–0.2 N. At these loads, we can neglect the adhesion

when estimating the nominal contact pressures. When a spher-

ical ball with radius R is squeezed against a flat surface with

the normal force F, according to the Hertz theory, the radius

of the circular contact region is

r0 =

(

3FR

4E∗

)1/3

,

where E∗ = E/(1 − ν2). The maximum nominal contact

pressure is

p0 =
3F

2πr2
0

.

Note that the contact pressure scale with the loading force

as p0 ∼ F1/3. Using E = 2.5 MPa, ν = 0.5, R = 1.5 cm, and

F = 0.1 N gives r0 ≈ 0.7 mm, and p0 ≈ 0.1 MPa.

Consider the squeezing of the glass ball against the rubber

surface in silicone oil. The glass ball is assumed to be perfectly

smooth, while the rubber surface has surface roughness with a

power spectrum shown in Fig. 32. As shown elsewhere,44 the

separation between the glass ball and the substrate as a function

of time can be accurately described by a simpler model where

the glass ball is replaced with a circular disc with the same

radius r0 as the radius of the Hertz contact region when the ball

is squeezed against the rubber (with the same normal force)

without a liquid. The load acting on the circular disk is the

same as that on the glass ball. We will now present results for

the interfacial separation and the area of real contact using this

mapping of a ball on a disc.

Let us consider a circular disc with radius r0 = 0.7 mm

being squeezed against a nominal flat surface in a Newtonian

fluid with the viscosity η = 0.35 Pa s, see Fig. 6 showing (a)

the logarithm of the interfacial separation and (b) the relative

area of real contact as a function of the logarithm of the contact

time. The initial separation is 0.1 mm, and the loading force

increases linearly with time from 0 to its final value 0.1 N dur-

ing the first 0.01 s. We observe that for p = 0.1 MPa (green

lines) after ∼100 s the disc (or the ball) has reached its final

state where the whole load is carried by the rubber asperity

contact regions. Since the loading (and unloading) times in

our experiments usually are longer than ∼100 s, we conclude

that there is very little viscous resistance to the motion of the

ball at any stage in the loading and unloading phase, except

for a short time interval following the adhesive bond break-

ing, where the ball would snap-off very fast if there would

be no fluid (viscous) damping effect. In fact, in the JKR the-

ory (for elastic solids and neglecting inertia effects), snap-off

occurs instantaneously (with infinite high speed), but in a fluid

the motion will be damped. In water, the viscous damping is

very small (and cannot be resolved in the experiments pre-

sented below, where the time resolution is 1 s), but in the

silicon oil (which has 350 times higher viscosity than water),



234702-6 Dorogin et al. J. Chem. Phys. 148, 234702 (2018)

FIG. 6. The (a) logarithm of the interfacial separation and (b) the relative

area of real contact, as a function of the logarithm of time, in the model with

a circular disk of radius 0.7 mm squeezed against a nominally flat surface in

a Newtonian fluid with the viscosity η = 0.35 Pa s. The substrate surface has

the surface roughness power spectrum shown in Fig. 32 (the dashed line), and

the Young’s elastic modulus E = 2.5 MPa and Poisson ratio ν = 0.5. We show

results for the squeezing pressures p = 0.07 MPa (green lines) (as relevant for

the experiments presented in this paper) and for a much higher pressure p =

1.5 MPa (red lines), as typical for rubber seals or syringe applications. In (a),

the lower red and green lines show the interfacial separation for perfectly flat

surfaces (no surface roughness), while the other two lines is with the surface

roughness included.

the snap-off extends over∼100 s in agreement with theory pre-

dictions (see Appendixes I and J). Since the squeeze-out time

is proportional to the fluid viscosity, for water we expect that

it takes less than 1 s for the disc (or the ball) to reached its final

state.

For the higher nominal contact pressure p = 1.5 MPa (red

lines), the situation is completely different. Although this case

is not of relevance for the experiments presented below, we will

discuss this case in some detail as this is the typical contact

pressure prevailing in most engineering applications, e.g., for

rubber seals or in the contact regions between the ribs of a

rubber stopper and the barrel in syringe applications. At the

contact pressure p = 1.5 MPa, in the absence of the fluid, nearly

complete contact occurs between the solids in the nominal

contact area, i.e., A/A0 ≈ 1. However, in a fluid, when the

relative contact area reaches A/A0 ≈ 0.4, the area of real contact

percolates, and no fluid can flow at the interface; this results in

trapped islands of pressurized fluid at the interface. Hence, in

a fluid, at least in the absence of adhesion (dewetting), when

during squeezing the relative contact area approaches A/A0

≈ 0.4, the fluid flow at the interface (squeeze-out) will slow

down. This will result in almost infinitely long squeeze-out

times when the external load is large enough to give A/A0 > 0.4

for dry surfaces. This is the origin of the long-time dependency

of u(t) and A(t) shown in Fig. 6 for p = 1.5 MPa. We note that

this effect is of great importance in applications, e.g., to seals

or syringes.

IV. VISCOELASTIC CRACK PROPAGATION

It is well known that the boundary line between contact

and non-contact in JKR adhesion experiments can be consid-

ered as a mode I crack even if the material on the two sides

are different (see, e.g., Ref. 35). For viscoelastic materials,

the (opening) crack propagation energy (per unit surface area)

can be written as γopen(v , T ) = ∆γ[1 + f (v , T )], where ∆γ is

the crack propagation energy as the crack tip velocity v → 0.

From the measured viscoelastic modulus we can calculate the

enhancement factor [1 + f (v , T )] to interfacial crack propaga-

tion (see Appendix D), which is important for understanding

the adhesion data to be presented later.

Using the theory developed in Ref. 31, in Fig. 7 we show

the viscoelastic crack propagation factor [1 + f (v , T )] as a

function of the logarithm of the crack tip velocity v . The results

are for the bromobutyl rubber compound at T = 20 ◦C. The

red line uses the low-strain (0.04% strain) modulus, and the

green line uses the large-strain (≈15% strain) modulus. The

vertical dashed line indicates a typical crack tip velocity in the

experiments reported on in Sec. VI.

For closing crack propagation, as it is involved in the JKR

experiments when the ball is squeezed against the substrate, the

crack propagation energy γclose ≈ ∆γ/[1 + f (v , T )]. Hence the

viscoelastic energy dissipation can result in a strong adhesion

FIG. 7. (a) Schematic picture of the macroscopic contact area during load-

ing, (b) during unloading in the absence of adhesion hysteresis, and (c) when

strong adhesion hysteresis occurs so thatγopen ≫ ∆γ. The black regions indi-

cate asperity contact regions. Because of the adhesive interaction, complete

contact occurs within the black regions. During pull-off in case (b) the asper-

ity contact regions decrease in size everywhere. During pull-off in case (c)

the size of the asperity contact regions remains unchanged (in spite of the

reduction in the contact pressure) except close to the macroscopic (apparent)

opening crack tip (dashed circle), where the asperity contact regions are bro-

ken by the propagation of microscopic opening cracks at each asperity contact

region.
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hysteresis, where γ(v , T ) during contact formation is much

smaller than during pull-off.

V. ADHESION HYSTERESIS

Let us now include the effect of adhesion hysteresis

which we left out of consideration in Section III. We will use

the argument first presented in Refs. 45 and 46 to show that

the pull-off force is always finite when adhesion hysteresis

prevails, assuming that it is big enough.

Assume that at the end of the loading cycle the asperity

contact regions appear as shown in Fig. 7(a). In the absence

of adhesion hysteresis [Fig. 7(b)], during unloading the asper-

ity contact regions would disappear in a similar way as they

were formed. Asperity contact regions even at the center of

the macroscopic contact area will decrease in size even at the

start of unloading, where the radius r(t) of the macroscopic

separation line (dashed lines in Fig. 7) is far from the center of

the contact region. However, if the adhesion hysteresis is large

enough so that the energy per unit area for the opening crack

γopen(v)≫ ∆γ, then the asperity contact regions will only start

to shrink when they are very close to the macroscopic opening

crack (in the crack-tip process zone) [Fig. 7(c)]. In this case,

the pull-off force will be non-vanishing, and to a good approx-

imation given by the JKR theory with w ≈ γopen(v)A1/A0,

where γopen(v) is the work of adhesion (for opening crack)

obtained from the contact between smooth surfaces and A1/A0

is the normalized area of real contact. This is illustrated in

Fig. 7(c), where the size of the asperity contact regions out-

side of the crack-tip process zone remains unchanged (in

spite of the reduction in the contact pressure). Very close to

the tip of the macroscopic (apparent) opening crack (dashed

circle), the asperity contact regions are broken by the propa-

gation of microscopic opening cracks at each asperity contact

region.

We now present results for how the adhesion force

depends on the applied (maximum) load or normal force. As

pointed out above, when strong adhesion hysteresis occurs the

work of adhesion during separation will be w ≈ γopen(v)A1/A0.

The relative contact area A1/A0 will be close to the relative con-

tact area when the load is maximal. Assuming that the adhesion

is weak during approach we expect from the Hertz contact the-

ory that the nominal contact pressure depends on the load as

F
1/3
N

. If we assume that A1/A0 depends linearly on the nominal

contact pressure (as it is the case as long as adhesion is not

important during approach and A1/A0 is smaller than ∼0.3),

then it follows that the pull-off force should be proportional

to F
1/3
N

. We now present adhesion experiments to test these

hypotheses (see also Ref. 46).

Figure 8(a) shows the interaction force as a function of

time when a glass ball (diameter 2R = 5 cm) approaches and

retracts (speed vz = ±25 µm/s) from the bromobutyl rubber

sheet. We show results for three different loading regimes,

where the maximum loading forces are Fm = 0.126 (the red

curve), 0.407 (the green curve), and 0.747 N (the blue curve).

Assuming that the rubber elastic modulus Eeff = 2.5 MPa gives

the Hertz maximum contact pressures p0 = 0.072, 0.106, and

0.130 MPa. These are all in the region where, in the absence

of adhesion, we expect the contact area to depend linearly

FIG. 8. (a) The interaction force for three different loading regimes as a func-

tion of time. The glass ball approach and retraction velocity vz = ±25 µm/s.

(b) The pull-off force Fpull-off divided by F
1/3
m , where Fm is the maximum

loading force, as a function of Fm. For a glass ball with diameter 5 cm loaded

against the bromobutyl rubber.

on the contact pressure (see Fig. 3). Thus, since the Hertz

contact pressure scales as F
1/3
m , we expect the pull-off force to

be proportional to F
1/3
m . Figure 8(b) shows that this is indeed

the case. Note that for smooth surfaces, where the contact is

complete, we do not expect any dependency of the pull-off

force on the maximum loading force. This was indeed shown

to be the case in Ref. 46 for polydimethylsiloxane (PDMS)

rubber with a very smooth surface.

We have performed optical studies of the contact between

the bromobutyl rubber and a smooth glass surface, which illus-

trates the discussion above. Figure 9 shows optical pictures of

the contact when the glass plate was first loaded against a rect-

angular rubber block (9.0 mm × 6.6 mm with thickness 2.0

mm) with a large force (of order ∼50 N) for ∼5 s, and then

removed. The two bright (white) circular area arises from two

of the four light diodes used to illuminate the contact.

Due to the strong adhesion hysteresis, after the load was

removed the rubber continued to adhere to the glass surface

and the contact area was unchanged. Figure 9(a) shows the

contact after ∼200 s, prior to which we removed (by peel-

ing) the contact between the rubber and the glass surface over

the upper half of the nominal contact region. Note the bound-

ary line (opening crack tip) between the non-contact area (the

upper half of the picture) and the lower half where (partial)

contact occurs.

Figure 9(b) shows the contact after waiting 48 h. Note

that the contact in (b) is virtually identical to that obtained

immediately after the load was removed [see Fig. 9(a)]. This

is a consequence of the huge contact hysteresis prevailing in

the present case, where the elastic deformation energy stored
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FIG. 9. Optical picture of the contact between the bromobutyl rubber and a

flat glass surface. The glass plate was first loaded against the rubber surface

with a large force (of order ∼50 N) for ∼5 s and after the load was removed.

We observed that the rubber continues to adhere to the glass surface and

the contact area is unchanged. (a) The contact after ∼200 s contact time,

prior to which we removed (by peeling) the contact between the rubber and

the glass surface over the upper half of the nominal contact region. Note

the boundary line (opening crack tip) between the non-contact area and the

(partial) contact. (b) After waiting 48 h, the contact is virtually the same as

after ∼200 s contact time. This is the result of the huge contact hysteresis: the

elastic deformation energy stored in the compressed asperity contact regions

is not large enough to propagate opening cracks around the contact spots,

resulting in a time-independent contact area.

in the compressed asperity contact regions is not large enough

to propagate opening cracks around the contact spots, resulting

in a nearly time-independent contact area.

Figure 10 shows the optical picture of the contact between

the rubber and the glass surface when the loading force FN

= 8.39 N. The nominal contact pressure p = FN/A0 ≈ 0.1 MPa.

(a) shows the contact after 200 s and (b) after 64 800 s (18 h).

The dark regions are contact area. Note that the contact area

increases with increasing contact time.

From the optical pictures in Fig. 10, it is possible to esti-

mate the relative contact area, but the result depends on the

black/white intensity threshold used: threshold = 0.15 gives

A/A0 = 0.14 after 200 s and 0.28 after 64 800 s. If we instead

use threshold = 0.2, we get 0.18 and 0.35, respectively, and

with the threshold = 0.1, we get 0.085 and 0.20, respec-

tively. In all cases, the contact area increases with a factor of

≈2.

There are two effects which result in an increase in the

contact area with increasing time. Assume first that adhesion

FIG. 10. Optical picture of the contact between the bromobutyl rubber and a

flat glass surface loaded against the rubber with the normal force FN = 8.39

N. The rubber sample is rectangular with lateral surface area A0 = 9.00 × 9.64

mm2 and thickness 2 mm. The width of the shown contact region is about ≈3

mm. The nominal contact pressure p = FN/A0 = 0.097 MPa. (a) The contact

after 200 s. (b) The contact after 64 800 s (18 h). The dark regions are contact

area. The two bright (white) circular areas arise from two of the four light

diodes used to illuminate the contact. From the optical pictures, it is possible

to estimate the relative contact area, but the result depends on the black/white

intensity threshold used: threshold = 0.2 gives A/A0 = 0.18 after 200 s and

0.35 after 64 800 s. If we instead use threshold = 0.15, we get 0.14 and 0.28,

respectively, and with the threshold = 0.1 we get 0.085 and 0.20, respectively.

In all cases, the contact area increases with a factor of ≈2.

can be neglected. In this case, the contact area will increase

only due to the bulk viscoelasticity. Assuming that the contact

area is inversely proportional to the relaxation modulus47,48

E(t) (as expected when A/A0≪ 1 and without adhesion), from

Fig. 1 we get an increase in the contact area with a factor

of about 1.3 which is smaller than we observe in the optical

experiments.

To understand the role of adhesion, we note first that the

asperity contact regions in Fig. 10(a) have diameters of order

30 µm which on the average increases by a factor of ∼1.4

when going to Fig. 10(b). Thus the closing crack around each

asperity contact region must move with the average speed v ≈

d/t, where d ≈ 10 µm and t ≈ 64 800 s, i.e., v ≈ 2 × 10−10 m/s.

For this velocity, from Fig. 11, we obtain the viscoelastic crack

reduction factor 1/[1 + f (v , T )]≈ 0.16. Thus the effective work

of adhesion γclose ≈ 0.16∆γ ≈ 0.045 J/m2. Using this value

from Fig. 3, we obtain A/A0 ≈ 0.35. This estimation is very

rough since the opening crack tip does not move with a constant
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FIG. 11. The viscoelastic crack propagation factor [1 + f (v, T )] as a function

of the logarithm of the crack tip velocity v for the filled bromobutyl rubber

compound at T = 20 ◦C. The red line uses the low-strain (0.04% strain)

modulus and the green line uses the large-strain (≈15% strain) modulus. The

vertical dashed line indicates a typical crack tip velocity in the experiments

reported on in Sec. VI. In the calculations we have used a0 = 1 nm (see

Appendix D) and the viscoelastic modulus shown in Figs. 27 and 29.

velocity as assumed above but with a decreasing velocity. Still

the estimation shows that the relative contact area estimated

by the theory is similar to what is deduced from the optical

picture (see Fig. 10).

To estimate more accurately how the contact area depends

on the contact time we approximate wopen ≈ w0(1 + (v/v0)α).

From Fig. 11 in the relevant (low-velocity) region α ≈ 10.

Thus we get wclose ≈ w0/(1 + (v/v0)α) ≈ w0(v/v0)−α. Assum-

ing that each contact region can be treated as a small JKR

region, one can show that for long times (or for all times when

the nominal contact pressure vanishes and wclose ∼ v
−α) the

contact area scales with time as A ∼ t2/3α. When t increases

from t = 200 s to 64 800 s, this gives an increase in the

contact area with a factor of (64 800/200)2/3α
≈ 1.5. Taking

that into account as well as the contribution from the vis-

coelastic relaxation described above, that leads to the total

increase by a factor of 1.5 × 1.3 ≈ 2 which is in good agree-

ment with the observations (see Fig. 10). Note also that t2/3α

= exp((2/3α) log t) ≈ 1 + (2/3α) log t as long as (2/3α) log t

≪ 1 so in some intermediate time interval the relation A/A0

∼ t2/3α is similar to a logarithmic time-dependency.

We have shown above that when strong contact hystere-

sis occurs the work of adhesion and hence the JKR pull-off

force are proportional to the normalized area of real contact,

FIG. 12. The experimentally measured work of adhesion as a function of the

logarithm of the waiting contact time. For a glass ball (diameter 2R = 5 cm)

against the bromobutyl rubber. The maximal normal load Fm ≈ 0.2 N.

A/A0. The contact area increases with the time of stationary

contact due to viscoelastic relaxation (see Fig. 1), and (more

importantly) due to strengthening of the adhesive interaction

with increasing contact time.

The effect of the contact time on the pull-off force is illus-

trated in Fig. 12 where we show the measured work of adhesion

(red squares) as a function of the logarithm of the waiting con-

tact time (see Sec. V for the experimental details). The pull-off

force increases by a factor of∼2.2 as the contact time increases

from 103 s to 3× 105 s. This is in good agreement with the time-

dependency of the contact area observed above (see Fig. 10)

and, as explained above, is probably mainly due to the velocity

dependency of the work of adhesion for the closing crack tip.

VI. ADHESION: EXPERIMENTS AND ANALYSIS

In this section, we describe the set-up used for our adhe-

sion studies and present results for the contact between smooth

glass and the bromobutyl rubber in dry condition, and when

immersed in water and in silicone oil.

A. Experimental

We study the adhesion interaction between spherical silica

glass balls [diameter 2R = 2.5 cm (in fluids), and 4 cm or 5 cm

(dry state)] and rubber in dry and lubricated conditions. We

bring the ball into contact with the substrate using a drive which

can be represented by a spring (see Fig. 33(b) and Appendix H).

The contact region is not observed directly but only the time

dependency of the interaction force F(t) and the displacement

s(t) of the upper part of the driving spring are measured. The

experimental adhesion data are analyzed using the JKR theory

(see Appendix E).

The rubber substrate is positioned on a very accurate bal-

ance (analytical balance produced by Mettler Toledo, model

MS104TS/00) which has a reproducibility of 0.1 mg (or ≈1

µN) (see Fig. 13). After zeroing the scale of the instrument,

we can measure the force F(t) on the substrate as a function

of time, which is directly transferred to a computer at a rate of

1 or 10 measurement points per second.

To move the glass ball up and down, we use an electric

motor coiling up a nylon cord, which is attached to the glass

ball. The drive velocity as a function of time can be speci-

fied on a computer. In the experiments reported on below, the

glass ball is repeatedly moved up and down, sometimes for

more than 10 contact cycles, involving a measurement time

FIG. 13. The experimental set-up for measuring adhesion.
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of sometimes more than 24 h. The maximum loading force is

typically ∼0.1 N corresponding to the loading mass ∼10 g.

We consider the adhesion between borosilica glass balls

and the (carbon black filled) bromobutyl rubber. Here we note

that the rubber contains low-molecular weight components,

which can migrate (diffuse) from the bulk to the surface. In

the experiments, we have used rectangular or circular rubber

sheets with a diameter of order a few cm, and the thickness

≈2 mm. For measurement of adhesion in the dry state, the

rubber sheets were attached to a flat surface using double sided

adhesive tape. For measurements in liquids, the rubber sheets

were confined at the bottom of a cylindrical PMMA tube using

an elastic spring.

We study first the dry rubber-glass contact, where the rub-

ber surface has been cleaned using different procedures. Next

we study the adhesion when the system is immersed in water

or in silicone oil.

B. Adhesion for dry condition

The adhesion experiments consist of several loading-

unloading cycles. In the loading phase, we lower the glass

ball toward the rubber sample with a constant speed vz. After

some fixed displacement, which results in the contact between

the glass ball and the rubber (contact force∼0.1 N), we reverse

the velocity and pull-off the glass ball with the same velocity as

during approach. As an example, in Fig. 14 we show the inter-

action force between the glass ball and the rubber compound

as a function of time for 4 contact cycles with the drive speed

vz = ±0.9 µm/s. The green line is for bromobutyl cleaned by

brushing the surface with soft toothbrush in boiling hot water

for about 1 min. The blue curve is the same procedure followed

by lapping the rubber surface for a few second with soft tissue

wet by acetone.

Note that the detachments in Fig. 14 occur rather abruptly

(in about ∼1 s). In fact, for a purely elastic solid and neglect-

ing inertia the detachment time would be zero, but in the

present case the detachment time is determined by the velocity

dependency of the crack propagation energy.

FIG. 14. The interaction force between the glass ball and the bromobutyl

rubber as a function of time for 4 contact cycles with the drive speed vz = 0.9

µm/s. The green line is for the rubber cleaned by brushing the surface with

soft toothbrush in boiling hot water for about 1 min. The blue curve is the

same procedure, but first the rubber surface was cleaned by lapping it for a

few second with soft tissue wet by acetone.

FIG. 15. The work of adhesion during retraction (separation) as a function of

the number of contacts between bromobutyl rubber with surfaces. The glass

ball was originally cleaned with acetone, and the rubber surfaces were cleaned

with acetone (squares), brushed in hot distilled water (star), or first cleaned in

hot water and then with acetone (triangles). Note that the adhesion decreases

with the number of contacts due to transfer of molecules from the rubber to

the glass surface.

Figure 15 shows the work of adhesion during retraction

(separation) as a function of the number of contacts. The

glass ball was originally cleaned with acetone and the rub-

ber surfaces with acetone (square symbols) or brushed in hot

distilled water (stars), or first cleaned in hot water and then

with acetone (triangles). Note that in all cases, due to transfer

of mobile molecules (e.g., stearic acid) from the rubber surface

to the glass surface, the adhesion decreases with the number

of contacts.

A decrease in the work of adhesion with increasing num-

ber of contacts has also been observed in Refs. 49–52 for

sapphire and glass balls in contact with silicone rubber. In these

cases, the reduction in adhesion was attributed to transfer of

oligomers from the rubber to the balls.

Figure 16 shows the result of a second adhesion study per-

formed ≈1/2 year after the experiments reported on in Fig. 15,

and for a higher the pull-off speed (5 µm/s, as compared to

0.9 µm/s in Fig. 15). In this case, the rubber surfaces were

cleaned by lapping it for a few second with soft tissue wet

by isopropanol. Isopropanol is a “softer” cleaning fluid than

acetone, but the results are very similar.

FIG. 16. The work of adhesion during retraction (separation) as a function

of the number of contacts between bromobutyl rubber with surfaces. The

glass ball was originally cleaned with acetone, and the rubber surfaces were

cleaned with isopropanol. The experiment was performed ≈1/2 year after the

experiments reported on in Fig. 15. Note that the adhesion decreases with the

number of contacts due to transfer of molecules from the rubber to the glass

surface.
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Figure 11 shows that for the crack tip velocity vr = 5 µm/s,

the viscoelastic enhancement factor for the work of adhesion

is (1 + f ) ≈ 20. If we assume a clean glass surface and that

only dispersion forces act between the rubber and the glass sur-

face, the adiabatic work of adhesion was estimated in Sec. II

to be ∆γ ≈ 0.1 J/m2, and if we use the contact area A1/A0

≈ 0.3 (see Figs. 3 and 11) we get the work of adhesion

w ≈ ∆γ(A/A0)(1 + f ) ≈ 0.6 J/m2. This is a factor of ∼3 smaller

than what is observed in Figs. 15 and 16 for the first contact

with the glass ball. Hence for the clean glass ball the work

of adhesion ∆γ ≈ 0.3 J/m2. This is larger than expected in the

adiabatic limit if only dispersion forces act between the rubber

and the glass surface (see Sec. II) and shows that some other

types of stronger bonds form between the clean glass and rub-

ber surfaces. However, after the glass surface is contaminated

the work of adhesion drops to ≈0.6 J/m2 and at this point the

dispersion forces may give the dominant contribution to the

work of adhesion.

C. Adhesion in water

We have performed adhesion experiments with the glass

ball and rubber immersed in water and in silicone oil. Fig-

ure 17 shows the experimental set-up. The fluid is located in a

PMMA container (inner diameter 4 cm) with a PMMA cover

to avoid evaporation of the fluid. The top cover has a small hole

(diameter 1 mm) through which the nylon rope (diameter 0.3

mm), used for moving the glass ball, passes. The rubber sheet

is located at the bottom of the container. The glass ball (diam-

eter 2R = 2.5 cm, with a flattened top part) is fully immersed in

the fluid during the contact cycling. The container is located on

a sensitive laboratory balance used for measuring the pull-off

force.

Figure 18 shows the work of adhesion during retraction

(separation) as a function of the number of contacts between

FIG. 17. Experimental set-up for adhesion studies in fluids (in the case of

silicone oil). The fluid is located in a PMMA container (inner diameter 4 cm)

with a PMMA’s cover to avoid evaporation of the fluid. The top cover has a

small hole (diameter 1 mm) through which the nylon rope (diameter 0.3 mm),

used for moving the glass ball, passes. The rubber sheet (in this case a carbon

filled bromobutyl rubber sheet) is located at the bottom of the container. The

glass ball (diameter 2.5 cm, with a flattened top part) is fully immersed in

the fluid during the contact cycling. The container is located on a sensitive

laboratory balance used for measuring the pull-off force.

FIG. 18. The work of adhesion during retraction (separation) as a func-

tion of the number of contacts between the glass ball (diameter 2R = 2.5

cm) and the bromobutyl rubber in water. The glass ball was originally

cleaned with acetone and isopropanol. The rubber surface was cleaned with

isopropanol.

the glass ball and the rubber surface. The glass ball was origi-

nally cleaned with acetone and isopropanol. The rubber surface

was cleaned with isopropanol. The red squares are for the

case the glass ball made contact with the rubber in water.

Note the drop in the work of adhesion with increasing number

of contacts, which is much smaller than for the dry contact

(Figs. 15 and 16). Thus there appears to be a strong reduc-

tion in the transfer of molecules from the rubber to the glass

surface when the contact is in water as compared to the dry

contact.

Figure 19 shows the work of adhesion during retraction

(separation) as a function of the contact time between the glass

ball and the rubber surface. Note the huge increase in the work

of adhesion with increasing contact time. This increase is much

stronger than observed for dry surfaces, where the work of

adhesion increased with a factor of ∼1.5 as time increases

from 103 s to 105 s (see Fig. 12). In the present case, the

increase in the same time interval is a factor of ∼5. We inter-

pret this as resulting from (slow) thermally activated dewetting

transitions in the asperity contact regions. We have seen in

Sec. III that continuum mechanics calculations for the con-

tact between the glass ball and the rubber in water predict that

already after ∼1 s the water is squeezed out from the asper-

ity contact regions, and the contact area and the interfacial

FIG. 19. The work of adhesion during retraction (separation) as a function of

the contact time between the glass ball and the bromobutyl surface in water.

The glass ball was originally cleaned with acetone and isopropanol. The rubber

surface was cleaned with isopropanol.
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separation become time independent. This is also consistent

with optical pictures of the contact in water where the contact

looks the same after ∼10 h as compared to ∼100 s contact

time. However, we believe that there is a very thin (of order

nanometer) water film between the rubber asperities and the

glass surface, which only very slowly is removed by the nucle-

ation of dry rubber-glass surface areas (dewetting transitions).

Only by assuming this is it possible to explain the observed

strong increase in the work of adhesion with increasing contact

time (see Fig. 19).

We have argued in Sec. II that the interaction potential

between rubber and the glass surface in water has the form

shown in Fig. 2. At short separation, the interaction potential

has a local minimum corresponding to direct contact between

the rubber and the glass surface. In this case, bonding forces

(of unknown nature), stronger than the dispersion forces, occur

between the surfaces.

When a bromobutyl rubber is squeezed in contact with

the glass surface in water we expect first a rapid squeeze-out

(see Sec. III) until contact occurs between the rubber asperities

and the glass surface. However, at short contact time we do not

expect any true atomic contact between the rubber and the glass

surface, but a water film of nanometer thickness separates the

surfaces in the asperity contact regions. However, this state is

metastable and after a long enough time we expect true atomic

contact to form between the rubber and the glass surface in the

asperity contact regions. This dewetting process involves the

nucleation (by thermal fluctuations) of nanometer sized con-

tact regions followed by the removal of the nanometer water

film by a (mainly) surface-energy driven squeeze-out process.

Thus we expect the contact area between the rubber and the

glass surface to increase continuously with increasing contact

time, which is consistent with the observed increase in the

work of adhesion with increasing contact time (see Fig. 19).

We note, however, that optical pictures of the glass-rubber

contact in water do not show any time-dependent changes.

This is due to the fast fluid squeeze-out and to the limitation

of our optical microscope. Thus, with our optical set-up, if

the rubber-glass surfaces are separated by thin fluid film, say,

1 nm of water, it may appear the same as for direct rubber-glass

contact.

Figure 20 shows an optical picture of the contact between

the glass and rubber surface squeezed together in water. Note

the granular structure which must be caused by the rubber

surface roughness. Similar pictures obtained after different

contact times (not shown) look the same.

Figure 21 shows an optical picture of a small water droplet

squeezed between the glass and rubber surface. Both dry and

wet regions can be observed. When the normal load is slowly

increased, the fluid covered region increases in size via small

local (rapid) expansions of the wet area, followed by time

periods where no change occurs in the line boundary separat-

ing the water covered and the dry surface area. We interpret

this as a Laplace-pressure effects, where the water pressure

locally must become high enough to overcome surface-energy

derived energetic barriers associated with narrow constric-

tions in the non-contact fluid flow channels. These energy

barriers could be important for the fluid flow at the interface

in leakage experiments when a small applied fluid pressure

FIG. 20. Optical picture of the contact between a flat glass plate and a rect-

angular rubber block squeezed together in water. Note the granular structure

which results from the rubber surface roughness. For the glass-rubber contact

fully immersed in water, we cannot detect any time-dependent changes in the

optical pictures. This is due to the rapid fluid squeeze-out and the fact that

in the optical pictures the rubber-glass contact regions where the surfaces are

separated by, say, 1 nm of water, look the same as when the rubber is in direct

contact with the glass.

difference occurs between the two sides in a seal (see Refs. 12

and 53).

Note that if the water is completely removed from some

rubber-glass contact regions during the loading phase, dur-

ing pull-off, because of the strong adhesion hysteresis, the

effective work of adhesion may be large. When strong con-

tact hysteresis occurs we have shown in Sec. V that w

= γopen(v)A/A0. The large magnitude of γopen(v) = ∆γ(1 + f )

implies that the relative contact area A1/A0 must be very small

for the contact in water for short contact times. Thus using

γopen(v) ≈ 1 J/m2 and w = 0.01 J/m2 as observed for very short

contact time (about 200 s), we get A/A0 ≈ 0.01 as compared

to A/A0 ≈ 0.3 for the dry contact case. However, the relative

contact area increases monotonically due to dewetting in the

asperity contact regions and for t ≈ 105 s from Fig. 19 we have

w ≈ 0.1 J/m2 and hence A/A0 ≈ 0.1.

On contact formation (approach) in water (and in silicon

oil), no adhesion can be detected, while during pull-off we

always observe adhesion.

FIG. 21. An optical picture of a small water droplet squeezed between a glass

plate and a rectangular rubber block. Both dry and wet regions can be observed

but pictures obtained at different times look the same in the wet region.
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D. Adhesion in silicone oil

We have performed two sets of experiments involving sil-

icone oil. In one experiment, the rubber and the glass ball was

covered with thin films (thickness d) of silicone oil. In this

case, we observed adhesion due to the formation of a capillary

bridge (see Appendix G). In the second set of experiments,

which we report on here, the glass ball and the rubber sample

is fully immersed in the silicone oil.

Figure 22 shows the work of adhesion as a function of the

contact number between the glass ball and the bromobutyl

rubber immersed in silicone oil (viscosity 0.35 Pa s). The

results are shown for the pull-off speeds 0.9, 1.8, 6.3, and

35 µm/s. Note the strong dependency of the work of adhe-

sion on the pull-off speed in contrast to the dry case where

the change in the work of adhesion with the pull-off speed is

very weak. In all cases, the “work of adhesion” is very small,

and, in Appendixes H–J, we show that it is strongly influenced

by the viscosity of the oil. Thus, at least for the two high-

est pull-off speeds, the JKR theory is probably not valid, and,

in these cases, the work of adhesion must be interpreted as

just the pull-off force Fc divided by (3π/2)R, i.e., it cannot be

considered to be an effective binding energy per unit surface

area. This fluid-viscosity effect is negligible in water because

water has 350 times smaller viscosity than the silicone oil (see

Appendix J).

For pull-off in the dry state and in water, we observed

very rapid detachment transition involving a transition time

of order ∼1 s. For the system immersed in silicone oil, the

detachment transition occurs over much longer time period.

This is illustrated in Fig. 23, which shows the interaction force

as a function of time close to a detachment for (a) dry sur-

faces, (b) in water, and (c) in silicone oil. The drive speed is

vz = 0.9 µm/s in (a) and (b) and 1.8 µm/s in (c). In (c), we

have superimposed (by shifting along the time axis) 4 differ-

ent pull-off events indicated by the different symbols. The data

presented in Fig. 23 were collected at a rate of one data point

per second, and the detachment transitions in (a) and (b) clearly

occur within 1 s, while in case (c) it extends over more than

10 s.

The green line in (c) is the theory prediction for the interac-

tion force assuming only a viscous drag force (see Appendix I),

FIG. 22. The work of adhesion as a function of the contact number for the

glass ball and the bromobutyl rubber immersed in silicone oil (viscosity 0.35

Pa s). The results are shown for the pull-off speeds, 0.9µm/s (red squares), 1.75

µm/s (green squares), 6.3 µm/s (black squares), and 35 µm/s (blue squares).

FIG. 23. The interaction force between the glass ball and the rubber as a

function of time close to a detachment for (a) dry surfaces, (b) in water, and

(c) in silicone oil (viscosity 0.35 Pa s). The drive speed is vz = 0.9 µm/s in (a)

and (b) and 1.8 µm/s in (c). In (c), we have superimposed (by shifting along

the time axis) 4 different pull-off events indicated by the different symbols.

The green line in (c) is the theory prediction for the interaction force assuming

only a viscous drag force (see Appendix I), with the initial (at F = 0) surface

separation u0 = 1.4 µm.

with the initial (at F = 0) surface separation u0 = 1.4 µm.

Thus viscous effects appear to explain the dependency of the

interaction force on time when F(t) < 0. However, the ini-

tial separation (at F = 0) u0 is determined by adhesion since

without adhesion theory predicts much larger surface sepa-

ration at F = 0 (see Appendix F). This is also consistent

with the results obtained in Sec. VI E, which shows that the

pull-off force depends on the chemical status of the glass sur-

face which would not be the case if only the fluid viscosity

would affect the adhesion.

In Appendix J, we show that the average surface separa-

tion u0 when F = 0 decreases as the pull-off speed decreases.

Thus we find u0 = 1.8, 1.65, and 1.4 µm for vz = 35, 6.3, and

1.75 µm/s, respectively. We interpret this as resulting from the

longer glass-rubber contact time at the lower approach and

pull-off speed (the contact time is proportional to 1/vz).
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As a further test, we performed another experiment with

the pull-off velocity 6.3 µm/s where we kept the ball in contact

with the rubber for 7200 s before removing the contact. In this

case, we found that using u0 = 1.3 µm gives good agreement

with the experiment, see Fig. 41. This is considerable smaller

than 1.65 µm found without the waiting time period. This is

in accordance with the results obtained in Sec. VI E, where

we found that for the clean glass ball the longer contact time

results in a stronger adhesive interaction between the glass ball

and the rubber, and hence to a smaller u0.

Here we also note that for the rubber-glass contact in

water, which exhibits a similar work of adhesion as in silicone

oil, optical microscope pictures of the rubber-glass contact do

not show any change when the loading force changes from

its maximum to zero. This again indicates that the energy to

propagate the opening crack (at relevant speeds) is so large

that the compressed asperities cannot reduce the contact area

during unloading.

E. On the dependency of the pull-off force
on the contact time in silicone oil

In Sec. VI D, we showed that the pull-off force for the con-

tact of the glass ball and the rubber in water increases strongly

with increasing time of contact. We interpreted this as result-

ing from a slow (thermally activated) dewetting process, where

a nanometer water film is removed from the asperity contact

regions. Here we study the same for the contact in silicone oil

for bare glass and for glass passivated by baked-on silicone

oil.

Glass surfaces with baked-on silicone oil exhibit low fric-

tion and low adhesion against rubber. In our case, the glass balls

were first cleaned by ultrasonic in purified water. Baked-on sil-

iconisation involves the application of silicone oil (usually as

an emulsion) on a glass surface, which then is baked on to the

glass surface at a specific temperature and for a specific time

period. We use an aqueous siliconization emulsion that contain

35% Dow Corning 360 Medical Fluid, 350 sSt (see Ref. 54).

The silicone oil emulsion is sprayed on the glass ball.

In the baked-on process, hydrogen and covalent bonds

form between the glass surface and the polydimethylsiloxane

chains (see Fig. 24). This results in a very inert and hydropho-

bic coating, where the bonds are so strong that the attached

polydimethylsiloxane chains cannot be removed with solvent.

FIG. 24. Baked-on siliconisation involves the application of silicone oil (usu-

ally as an emulsion) on a glass surface, which then is baked onto the glass

surface at a specific temperature and for a specific time period. In the baked-

on process, hydrogen and covalent bonds form between the glass surface and

the polydimethylsiloxane chains. This results in a very inert and hydrophobic

coating, where the bonds are so strong that the attached polydimethylsiloxane

chains cannot be removed with solvent.

FIG. 25. The work of adhesion as a function of the logarithm of the waiting

time for a “clean” glass ball (red stars) and for a glass ball with baked-on

silicone oil using procedure 2 (blue open circles) and for glass ball with baked-

on silicone oil obtained using procedure 1 (pink filled circles). For contact

between glass balls with diameter 2R = 2.5 cm and the bromobutyl rubber

in silicone oil (viscosity 0.35 Pa s). The pull-off velocity vz = 6.28 µm/s.

The numbers 1-3 for the “clean” glass balls indicate the time-order of the

measurements where increasing number corresponds to later measurement

during a total time interval of ∼5 month. During the waiting time, the glass

balls were immersed in silicone oil.

One set of balls was baked at T = 300 ◦C for 20 min

(procedure 1) according to the standard industrial procedure

for siliconisation of glass surfaces. Another set of balls was

baked at T = 150 ◦C for 1 h (procedure 2). In this latter case,

the balls were cleaned prior to the baking by exposing the glass

balls to oxygen plasma.

Figure 25 shows the work of adhesion as a function of

the logarithm of the waiting time for a “clean” glass ball (red

stars) and for glass balls baked in silicone oil using procedure

1 (filled circles) and procedure 2 (open circles). The glass balls

were removed with the speed vz = 6.28 µm/s.

For short times, all the glass balls give a similar effec-

tive work of adhesion. We interpret this (see also above and

Appendix H) as due mainly to the viscous drag which is the

same in all cases. Thus, we expect the surfaces in most of

the asperity contact regions to be separated by one or several

monolayers of silicone oil molecules. We note, however, that

the adhesion must be present since otherwise the (average)

interfacial separation when the force is reduced to zero, F = 0,

would be so large as to give much smaller viscous pull-off

forces than observed (see Appendix F).

In some cases, the work of adhesion for times >104 s

increases very rapidly. This may involve dewetting transitions

where the silicone oil is completely removed from some asper-

ity contact regions. This is most likely a thermally activated

process and needs long times to manifest.

The numbers 1-3 for the “clean” glass balls indicate the

time-order of the measurements, where increasing number cor-

responds to the later measurement during a total time interval

of ∼5 month. During the waiting time, the glass balls were

immersed in silicone oil. Clearly some type of (thermally acti-

vated) aging has occurred, which has resulted in a decrease in

the adhesive force with increasing time in contact with the oil.

We attribute this to an increasing passivation of the glass sur-

face involving processes similar to what is shown in Fig. 24.

Experiments performed with new rubber and new silicone oil

after long waiting time give a very low work of adhesion



234702-15 Dorogin et al. J. Chem. Phys. 148, 234702 (2018)

FIG. 26. The work of adhesion as a function of the logarithm of the waiting

time for a glass ball with baked silicone oil produced using procedure 1. The

pull-off speed vz = 0.87 µm/s.

indicating that the “aging” probably relates to passivation of

the glass ball.

Note in Fig. 25 the strong increase in w for waiting times

t > 104 s for the (original) clean glass ball during the first test

(denoted as 1). This agrees with the time dependency of the

break loose friction force for syringes with the glass barrel,

where the contact between the rubber stopper and the glass is

lubricated with silicone oil with similar viscosity as used above

(see Ref. 13). In Ref. 13, it was suggested that the increase in

the break loose friction force is associated with a dewetting

transition.

Figure 26 shows the work of adhesion as a function of the

logarithm of the waiting time for vz = 0.87 µm/s. Again the

work of adhesion does not depend on the contact time and is

roughly a factor of 2 smaller than for the higher pull-off speed

used in Fig. 25. This reduction in the work of adhesion (or

rather the pull-off force) is however much smaller than what

would be expected if the pull-off force would be determined

by the viscosity of the fluid since the velocity is reduced by

a factor of 0.87/6.28 ≈ 0.14. We attribute this to an adhesion-

induced reduction in the average interfacial separation u0 (at

the time when F = 0) due to the longer contact time at the

lower pull-off speed.

VII. SUMMARY AND CONCLUSION

Adhesive systems of glass in contact with filled bro-

mobutyl rubber in dry conditions, in water, and in silicone

oil have been experimentally investigated. The experimen-

tal results have been analyzed taking into consideration the

interplay between the viscoelastic energy dissipation, at the

contact crack tip and surface roughness, and capillary effects

and viscous drag in the case of liquid environments. Adhesion

hysteresis has been found both in pull-off force tests and sup-

ported by optical contact observation, which manifests itself as

a strong dependence of the pull-off force (and effective work

of adhesion) on the maximum loading force and contact time.

For the systems with liquid environments, much weaker adhe-

sion has been observed compared to the dry case. However,

the adhesion in liquid is significantly increased with contact

time (contact aging), which can be explained by expelling the

liquid from the contact region (dewetting transition). Since

the latter can be a practically important adverse effect for the

silicone-oil lubricated devices, it has been here shown that the

glass surface can be protected against the contact aging by the

siliconisation process prior to the adhesive contact.

To summarize, the most important results of our study

are

(a) For the bromobutyl rubber in contact with a clean glass

surface, we observe huge contact hysteresis where the

contact area remains unchanged as the external load-

ing force (or squeezing pressure) is removed. We have

shown that the contact hysteresis is mainly due to the

rubber viscoelasticity, which results in an interfacial

crack propagation energy which is much larger for an

opening crack than for a closing crack.

(b) For dry rubber–glass contact, we have shown that the

contact area increases slowly with time due to vis-

coelastic creep and, more importantly, due to the time-

dependency of adhesion (which is due to the velocity

dependency of closing crack propagation). We have

shown that the increase in the contact area manifests

itself as an increase in the work of adhesion during

pull-off.

(c) For rubber in contact with glass in water, we observe a

very strong increase in the adhesion with increasing con-

tact time, which we interpret as due to (thermally acti-

vated) dewetting transitions in the rubber–glass asperity

contact regions.

(d) For the adhesion between the rubber and siliconised

glass in silicone oil, we observe a very small work of

adhesion, which is nearly independent of the contact

time. This shows the stable and inert nature of the layer

of silicone oil molecules chemically attached to the glass

surface.

(e) For the adhesion between an (originally) clean glass sur-

face and the rubber in silicone oil, we observe a slow

decrease in the adhesion with the time period in which

the glass was kept in the oil before the adhesion test.

This indicates that silicone oil molecules, even at room

temperature, slowly react with the glass surface to form

a protective layer.

(f) We find that in silicone oil the pull-off force depends

on the oil viscosity, while for water this viscous contri-

bution to the pull-off force is negligible for the pull-off

velocities used in our study. We have developed a sim-

ple theory which describes the influence of the fluid

viscosity on the pull-off force.
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APPENDIX A: VISCOELASTIC MODULUS

In this section, we present the results for the viscoelas-

tic properties for the filled bromobutyl rubber compound used

in the adhesion studies. We used a Q800 Dynamic Mechani-

cal Analysis (DMA) instrument produced by TA Instruments.

The machine is run in tension mode, meaning that a rectan-

gular strip of rubber clamped on both sides, is elongated in

an oscillatory manner. The complex viscoelastic modulus is

first measured in constant strain mode with a strain amplitude

of 0.04% and at different frequencies starting from 28 Hz and

changed in steps until 0.25 Hz is reached (10 frequency points:

28.0, 25.0, 14.0, 7.9, 4.4, 2.5, 1.4, 0.79, 0.44, and 0.25 Hz).

The rather small strain amplitude is chosen in order to avoid

strain softening effects, e.g., the Mullins effect55 or the Payne

effect,56 which can strongly change the viscoelastic response

of the rubber specimen. It is not clear how these nonlinear

effects would affect the results at different temperatures, and

one therefore usually measures the low strain master curve

in the linear response region. From our previous experience,

we have found that a strain amplitude of 0.04% is reasonably

good for most rubber compounds. Measuring the rubber sam-

ple in tension mode also requires to prestrain the rubber with

a static strain that has to be larger than the dynamic strain dur-

ing oscillation. The prestrain in the experiments has been set

to 0.06% to avoid compressing the rubber during the DMA

measurement.

The experiment started at −80 ◦C and after measuring the

modulus at all frequencies mentioned above, the temperature

was increased in steps by 5 ◦C, and the procedure was repeated

until 120 ◦C is reached. Note that it might be necessary to

FIG. 27. The (a) real part ReE and (b) the imaginary part ImE of the rubber

viscoelastic modulus, and the ratio ImE/ReE as a function of the frequency

ω experimentally measured at 0.04% strain amplitude and combined in the

form of master curves for the reference temperature T ref = 20 ◦C.

FIG. 28. The horizontal shift factors, aT , as a function of the temperature

after the measurements performed at 0.04% strain amplitude and the shift

factors for the reference temperature T ref = 20 ◦C.

choose smaller temperature steps when reaching the glass tran-

sition temperature Tg where the viscoelastic response of the

rubber material changes strongly with frequency (and temper-

ature). This makes sure that the curves measured at different

temperatures overlap with each other, which is necessary for

the shift procedure to be accurate. The results are then shifted

in order to form a smooth ReE master curve.

Figure 27 shows the (a) real part ReE and the imagi-

nary part ImE of the rubber viscoelastic modulus, and (b) the

ratio ImE/ReE as a function of the frequency ω. The mea-

surements were performed at 0.04% strain amplitude and the

master curves refer to the temperature T ref = 20 ◦C. Figure 28

shows the horizontal shift factors, aT , as a function of the

temperature.

If we define the glass transition temperature Tg as the tem-

perature where tan δ = ImE/ReE as a function of temperature

is maximal (for the frequency ω = 0.01 s−1), then we obtain

Tg = −62 ◦C.

In the asperity contact regions between the rubber and

the glass ball, the strain is usually very high, up to ∼1 (where

the strain ǫ = 1 corresponds to 100% strain). To take into

account this, we have performed strain sweep up to very large

strain ǫ ≈ 1. Figure 29 shows the ratio ImE(ǫ)/ImE(0) and

ReE(ǫ)/ReE(0) as a function of the strain. The curves shown

are polynomial fit curves to the average over measurements

performed at T = −20 ◦C, 0 ◦C, and 20 ◦C.

FIG. 29. The ratio ImE(ǫ )/ImE(0) and ReE(ǫ )/ReE(0) as functions of the

strain (where the strain ǫ = 1 corresponds to 100% strain). The curves shown

are polynomial fit curves to the average over the measurements performed at

T = −20 ◦C, 0 ◦C, and 20 ◦C.
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APPENDIX B: CONTACT ANGLES AND SURFACE
ENERGIES

We have measured the advancing θA and receding θR con-

tact angles for water and silicone oil on the glass ball surface

and on the surface of the bromobutyl rubber and estimated

the adiabatic work of adhesion between the rubber and the

glass surface, in the dry state and in water and in silicone

oil.

A small droplet of silicon oil deposited on the rubber or

glass surface very quickly spreads out into a pancake like struc-

ture the diameter of which increased with time. Thus, θA = 0

(complete wetting) for silicon oil on both the glass and the

rubber surface. It follows that the thermal equilibrium contact

angle θc = 0.

For water, the measurements were performed by deposit-

ing a small water droplet on the rubber or glass surface (see

Fig. 30). The advancing contact angle was determined after

waiting ∼1 min at which point no movement of the contact

line could be detected. The receding contact angle was deter-

mined by studying the water droplet during evaporation of the

water. When enough water had evaporated the contact line

started to move inwards and at this point we measured the

receding contact angle. We performed 4 different experiments

for (a) a glass ball cleaned with acetone, (b) the bromobutyl

rubber surface cleaned with acetone, (c) a contaminated glass

ball surface, which was first cleaned with acetone and then

squeezed in contact (about 10 times) with the rubber, and (d)

the same as (c) but with the rubber–glass contact in water. The

TABLE I. The water contact angle (in degree) on (a) a glass ball cleaned

with acetone, (b) a bromobutyl rubber surface cleaned with acetone, (c) a

contaminated glass ball surface, which was first cleaned with acetone and

then (∼10 times) squeezed in contact with the rubber, and (d) the same as (c)

but with the rubber–glass squeezed contact in water. We give the advancing

θA, retracting θR, and (calculated) thermal equilibrium contact angle θc.

system θA θR θc

(a) Glass 26.8 3.0 15.3

(b) Rubber 92.5 26.5 55.9

(c) Contaminated glass 56.0 3.5 28.5

(d) Contaminated glass 33.0 4.0 19.0

measured advancing θA and retracting θR contact angles are

given in Table I.

To estimate the thermal equilibrium contact angle θc,

we used the expression proposed by Tadmor58 (see also

Chibowski59)

θc = arccos

(

rA cos θA + rR cos θR

rA + rR

)

,

where

rA =

(

sin3θA

2 − 3 cos θA + cos3θA

)1/3

,

rR =

(

sin3θR

2 − 3 cos θR + cos3θR

)1/3

.

The calculated thermal equilibrium contact angle θc is also

given in Table I.

FIG. 30. Water droplet on the glass cleaned with acetone

[(a) and (b)], on the glass contaminated by squeezing it

in contact with the rubber [(c) and (d)], and on the rubber

cleaned with acetone [(e) and (f)]. The left column [(a),

(c), and (e)] is about 1 min after depositing the water

droplet that is used to define the advancing contact angle.

The right column [(b), (d), and (f)] is after most of the

water has evaporated for defining the receding contact

angle. For the movies of the time evolution of the water

droplets, see Ref. 57.
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Note that after contact with the rubber the water contact

angle on the glass ball has increased. We interpret this as result-

ing from transfer of uncrosslinked molecules from the rubber

to the glass ball. When the contact between the rubber and the

glass surface occurred in water, the change in the water con-

tact angle is much smaller. We conclude that less molecules

are transferred to the glass surface when the rubber–glass con-

tact occurs in water as compared to that of the dry state. As

will be shown in Sec. VI, the transfer of molecules to the glass

surface when in contact with the rubber results in an adhesion

force between the two solids which decreases with increasing

number of contact cycles.

We also performed additional measurements of the water

advancing contact angles on another (nominally identical)

glass ball. The ball was first cleaned with acetone. Next, the

ball was squeezed in contact with the rubber which gave the

water advancing contact angle 42◦.

Let us estimate∆γ for the contact between the bromobutyl

rubber and the glass surface. The surface energy (per unit sur-

face area) for glass cleaned with acetone which results in a

surface still covered by water and some (strongly bounded)

organic contamination, is typically60 γ1 ≈ 0.06–0.07 J/m2.

The surface energy for bromobutyl rubber is61 γ2 ≈ 0.025

–0.035 J/m2. In a simple approach, if only dispersion forces

are responsible for the interaction between the glass and the

bromobutyl rubber, the adiabatic work of adhesion is approxi-

mately given by62
∆γ ≈ 2(γ1γ2)1/2, which in the present case

gives ∆γ(dry) ≈ 0.08–0.1 J/m2. However, the experimental

adhesion study presented below indicates that stronger bonds

form between the two surfaces and ∆γ ≈ 0.3 J/m2.

In a liquid, the adiabatic work of adhesion can be calcu-

lated using the Young-Dupre equation (1). The liquid surface

tension γ ≈ 0.072 J/m2 for water and for silicone oil γ ≈ 0.02

J/m2.

Let us now estimate the adiabatic work of adhesion

between bromobutyl rubber and the glass surface in water.

As shown above, the adiabatic contact angle between water

and the glass ball (cleaned by acetone) and the bromobutyl

rubber (also cleaned by acetone) is θgl ≈ 15◦ and θrl ≈ 56◦,

respectively. Assuming first only dispersion interaction

∆γ(dry) ≈ 2(γ1γ2)1/2
≈ 0.09 J/m2 from (1), we get ∆γ(wet)

≈ −0.02 J/m2. Hence in this case, we obtain that ∆γ(wet) is

negative, which implies no adhesion but a short ranged repul-

sion. However, as stated above, the adhesion studies presented

below (see Sec. VI) show that ∆γ(dry) ≈ 0.3 J/m2 giving

∆γ(wet) ≈ 0.2 J/m2.

The negative work of adhesion predicted above is due to

the dispersion force (i.e., the van der Waals interaction) which

acts between the surfaces (in a modified form) also when a

thin (nanometer) water film exists between the surfaces.62,63

Taking this into account we expect the interaction potential

between a flat glass surface and a flat rubber surface in water

to take the form shown in Fig. 2 with a repulsive barrier before

the strong attraction due to direct rubber-glass bonds. That

is, at separation of order a few nanometers the interaction is

only via dispersion forces and steric repulsion and is repul-

sive. At short separation, the interaction potential has a local

minimum corresponding to direct contact between the rubber

and the glass surface. In this state, bonding forces (of unknown

nature) stronger than the dispersion forces occur between the

surfaces.

For silicone oil, the adiabatic contact angles θgl ≈ 0◦ on

glass and θrl ≈ 0◦ on rubber. When one (or both) of the contact

angles vanishes, it is not possible to use (1) to estimate the

work of adhesion in the liquid, but this equation can only be

used to give an upper limit for the work of adhesion. Thus,

using ∆γ(dry) ≈ 0.3 J/m2, (1) gives ∆γ(wet) < 0.25 J/m2. The

adhesion measurements to be presented in Sec. VI indicate an

initially very weak adhesion in silicone oil and in water, which

increases with increasing time of contact.

APPENDIX C: RUBBER SURFACE POWER
SPECTRUM

We have studied the rubber surface topography using an

optical method and atomic force microscopy (AFM). As shown

in Fig. 31, the height probability distribution is nearly Gaus-

sian. Figure 32 shows the surface roughness power spectrum

as a function of the wavenumber on the logarithmic scale. The

green lines are from optical data, and the red lines are from

AFM data. The dashed line is a fit to the data, where the tilted

line has a slope corresponding to the Hurst exponent H = 0.92

(or fractal dimension Df = 2.08). In the calculations below,

we use the dashed line linearly (on the logarithmic scale)

FIG. 31. The height probability distribution for the bromobutyl rubber surface

as obtained from optical measured topography. The red and green lines are

from two different surface areas.

FIG. 32. The surface roughness power spectrum of the bromobutyl rubber

surface as a function of the wavenumber (log-log scale). The green lines

are from optical data, and the red lines are from atomic force microscopy

(AFM) data. The dashed line is a fit to the data where the tilted line has a

slope corresponding to the Hurst exponent H = 0.92 (or fractal dimension

Df = 2.08).
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extrapolated to q = q1 = 109 m−1. This power spectrum corre-

sponds to a surface with the rms-slope 0.55 and rms-roughness

2.9 µm.

APPENDIX D: INTERFACIAL CRACK PROPAGATION

The contact line between a spherical probe and a rubber

substrate can be considered as a crack tip and the work of

adhesion equals the crack propagation energy per unit surface

area w. It is well known that the crack propagation energy

depends on the crack tip velocity v and on the temperature T,

i.e., w = w(v , T ). In addition it differs for a closing crack and

an opening crack.

The crack propagation energy for an opening crack is often

written as31,64–67

γopen(v , T ) = ∆γ
[

1 + f (v , T )
]

. (D1)

Here we are interested in interfacial (between the glass ball

and the rubber substrate) crack propagation. In this case, as

the crack velocity vr → 0 (when viscous effects in the rubber

are negligible), the measured value of ∆γ can be identified as

the energy ∆γ = γ1 + γ2 − γ12 needed to break the interfacial

rubber-substrate bonds, which are usually of the van der Waals

type.

For simple hydrocarbon elastomers, the effect of temper-

ature can be completely accounted for by applying a simple

multiplying factor, denoted by aT , to the crack velocity v ,

i.e., f (v , T ) = f (aT v). Moreover, values of aT found exper-

imentally are equal to the Williams–Landel–Ferry (WLF)68

function determined from the temperature dependence of the

bulk viscoelastic modulus. This clearly proves that the large

effects of crack velocity and temperature on crack propaga-

tion in rubber materials are due to viscoelastic processes in the

bulk.

In (D1), the function f (v , T ) = f (aT v) describes the bulk

viscoelastic energy dissipation in front of the crack tip. This

term is determined by the viscoelastic modulus E(ω) of the

rubber and can be calculated theoretically. The factor∆γ is due

to the bond breaking (in our applications between the rubber

and the substrate) at the crack tip (in the so-called crack-tip

process zone), which may involve highly non-linear processes.

This term cannot be easily calculated theoretically and must

be deduced directly from experimental data.

In Refs. 31 and 32, we have shown that

γopen(v) = ∆γ

[
1 −

2

π
E0

∫ 2πv/a

0

dω
F(ω)

ω
Im

1

E(ω)

]−1

, (D2)

where E0 = E(0) and where

F(ω) =

[
1 −

(

ωa

2πv

)2
]1/2

. (D3)

The crack tip radius a = a(v) depends on the crack-tip velocity

v (and temperature) and can be determined if one assumes that

the stress at the crack tip takes some critical value σc. This

gives
a

a0

=

γopen

∆γ
, (D4)

where a0 is the crack-tip radius for a very slowly moving crack.

Note that the critical stress σc only enters in the adiabatic

work of adhesion w0 = 2πσ2
c a0/E(0) and is therefore not an

independent parameter. For high crack tip velocities, γopen(v)

≈∆γE(∞)/E(0)≫∆γ. This is possible only if the denominator

in the integral in (D2) is close to zero for high crack tip veloc-

ities, which means that the term involving the integral must

be close to unity. If (D2) is used directly to calculate γopen(v)

numerically, this requires that E(ω) is accurately known for

all frequencies, which is usually not the case. However, it

is possible to rewrite (D2) in a form convenient for numer-

ical calculations.32 The predictions of the crack propagation

theory presented above were compared to experimental data

in Refs. 31, 32, 69, and 70. Note that for rubber materials

E(∞)/E(0) is typically ∼1000, so factor f (v , T ) in (D1) may

enhance w by a factor of ∼1000 (or more) at high crack tip

velocities.

APPENDIX E: SHORT REVIEW OF THE JKR THEORY

The contact region between a spherical probe (radius R)

and a flat rubber surface is circular with the radius r. In the

JKR theory, the interaction between the solids is described by

the work of adhesion w, which is the energy per unit surface

area to separate two flat surfaces from their equilibrium contact

position to infinite separation. According to the JKR theory,

the relation between the interaction force F and the radius r

on the stable branch of the interaction curve is15,16

r3
=

3RFc

4E∗


F

Fc

+ 2 + 2

(

F

Fc

+ 1

)1/2
, (E1)

where E∗ = E/(1 − ν2) (where E and ν are the rubber Young’s

modulus and Poisson ratio, respectively), and where

Fc =
3π

2
wR (E2)

is the pull-off force. Thus for an elastic solid, if the ball is

pulled by a soft spring (and neglecting inertia effects), at

F = −Fc the pull-off force abruptly drops to zero.

It is well-known that the separation line r = r(t) can be

considered as a crack tip.67,71 The work of adhesion γopen in

general depends on the velocity vr = ṙ of the opening (dur-

ing pull-off) or closing (during contact formation) crack tip.

At finite crack tip velocity, for an opening crack, γopen can

be strongly enhanced (and for a closing crack γclose strongly

reduced), compared to the adiabatic (infinitely low crack tip

velocity) value ∆γ. One contribution to the work of adhesion

is derived from the viscoelastic energy dissipation in the vicin-

ity of the crack tip [see Fig. 33(a)]. For an opening crack, this

will enhance w with a factor of 1 + f (vr , T ), which depends on

the crack tip velocity vr and the temperature T. For a closing

crack, the corresponding reduction factor is approximately72

≈1/[1 + f (vr , T )].

Since the work of adhesion depends on the crack tip

velocity vr = ṙ(t) we need to determine this quantity. In the

experiments, we calculate vr from the time dependency of F(t)

assuming that the JKR theory is valid. Thus using (E1), we

can obtain r(t) from the measured F(t). During pull-off, the

velocity vr varies with time, but what is most important is the

velocity at the point when the pull-off force is maximal; this

is the crack tip velocity quoted below.
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FIG. 33. (a) A rigid ball pulled away from a viscoelas-

tic solid. A part of the energy needed to remove the ball

is derived from the viscoelastic energy dissipation inside

the rubber close to the opening crack tip (the red dashed

region). (b) If the spherical body can be treated as rigid,

the penetration δ is equal to the displacement of the upper-

most point of the ball toward the substrate where δ = 0

corresponds to the case when the ball just touches the

substrate in one point. Often δ is not measured directly

but rather the displacement s further away and in this case

some elastic element (spring constant k) relates the dis-

placements δ and s via k(s − δ) = F, where F is the force

exerted by the ball on the substrate.

In two earlier publications45,49 we have, for rubber mate-

rials, tested the JKR theory predictions above using another

set-up where r(t) was measured directly using an optical

microscopy. We found good agreement between the experi-

ments and the JKR theory prediction. Thus, in analyzing the

experiments presented below, we have obtained vr from the

time dependency of the interaction force F(t) using (E1).

APPENDIX F: INTERFACIAL SEPARATION WITHOUT
ADHESION

Contact mechanics in the presence of interfacial fluid is a

complex problem,44 and here we only employ a simple model

for how the interfacial separation vary with time when the

loading force is reduced from its maximum value to zero for

the ball-rubber contact in silicone oil. The pull-off during the

time period when F(t) < 0 will be studied in Appendixes H

and I. We assume first that there is no adhesion at the inter-

face. Let t = 0 correspond to the time when we start to pull-off

the ball and assume the interaction force F(t) = (1 − t/t0)F0,

where F0 is the maximum of the loading force, usually on

order 0.1 N and t0 is the time necessary to reduce the force to

zero, which depends on the pull-off velocity vz, but which is

typically 100–1000 s. As shown in Sec. III during the loading

phase [see the green curve in Fig. 6(a)] for loading times larger

than 10 s, the average interfacial separation is not influenced

by the fluid but is determined by the interaction between the

glass surface and the rubber asperities. Thus we will assume

that at t = 0 (start of pull-off) the (average) interfacial sep-

aration u = u0 takes the value expected for static loading

without the fluid. We will now study how u(t) increases as

the force F(t) decreases linearly toward zero assuming that

u(t = 0) = u0.

When the loading force is maximal, the Hertz contact

between the glass ball and the rubber surface is circular with

radius r0 and the average contact pressure p0 = F0/(πr
2
0
). We

now consider a simplified situation where instead of removing

a ball we remove a circular disc with radius r0 from the rub-

ber surface. We will also neglect the influence of the surface

roughness on the fluid flow dynamics. In the present case, the

average contact pressure is below 0.1 MPa and the fluid pres-

sure flow factor, which determines the influence of the surface

roughness on the fluid flow, is close to unity so neglecting the

influence of the surface roughness on the fluid flow is a good

approximation.

The initial contact pressure p0 is so small that we can use

the asymptotic relation p(u) for the rubber-glass interaction:

p = βE∗e−u/ua .

Thus the initial separation

u0 = −ua log

(

p0

βE∗

)

.

The parameters ua and β can be calculated from the surface

roughness power spectrum and we get β = 0.069 and ua = 1.45

µm. Neglecting adhesion the loading force F(t) must equal the

asperity contact force πr2p plus the viscous force, i.e.,

F(t) = −
3π

2
ηr4

0

u̇

u3
+ πr2

0 βE
∗e−u/ua . (F1)

Assuming F(t) = F0(1 − t/t0), one can solve (F1) numerically

for u(t). In Fig. 34, we show the results for the disc removed

from the elastic substrate (with Young’s modulus E = 2.5 MPa)

in a fluid with the viscosity η = 0.35 Pa s. The disc has the radius

r0 ≈ 0.655 mm, and the substrate has random roughness with

the power spectrum given in Fig. 32. The squeezing force on

the disc decreases linearly with time from F = F0 = 0.1 N

at time t = 0 to F = 0 at time t = t0. The average surface

separation u(t) is shown as a function of time for the case

t0 = 100 s (the green line) and t0 = 1000 s (the red line).

Note that the average surface separation at t = t0 is u(t0) = 8.8

FIG. 34. A circular disc removed from an elastic substrate in a fluid with

the viscosity η = 0.35 Pa s. The disc has the radius r0 ≈ 0.655 mm and the

substrate has random roughness with the power spectrum given in Fig. 34.

The squeezing force on the disc decreases linearly with time from F = F0

= 0.1 N at time t = 0 to F = 0 at time t = t0. The average surface separation

u(t) is shown as a function of time for the case t0 = 100 s (the green line) and

t0 = 1000 s (the red line). The rubber Young’s modulus E = 2.5 MPa and the

average contact pressure at t = 0 is p0 = F0/(πr2
0

) = 0.074 MPa.
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and 11.0 µm, respectively. However, in order to explain the

observed pull-off forces, one needs to assume u(t0) = 1.3–1.8

µm (see Sec. VI and Appendix H). This indicates that due to

adhesion the average surface separation at t = t0 is almost the

same as when the loading force is maximal [u(t = 0) ≈ 1.65

µm according to Fig. 34]. We attribute this to strong adhesive

contact hysteresis.

For water, the increase in the interfacial separation during

the unloading process, when F changes from its maximum to

zero, will be even larger than for the silicone oil due to its

smaller viscosity. However, for the case of water the opti-

cal microscopy pictures of the rubber-glass contact do not

show any change when the loading force is changed from its

maximum to zero. This again indicates that the energy to prop-

agate the opening crack (at relevant speeds) is so large that

the compressed asperities cannot reduce the contact area dur-

ing unloading. For contact in silicone oil, it is not possible to

directly observe the contact area with our optical microscope

because the contrast between contact and not contact is too

low.

APPENDIX G: ADHESION WITH SILICONE OIL FILMS
ON THE RUBBER AND GLASS SURFACES

We have studied adhesion when both the rubber and the

glass ball were covered with thin films (thickness d) of sili-

cone oil. The adhesion data are analyzed using the JKR theory

although this theory may not be strictly valid in the present

case. Hence, the “work of adhesion” quoted below must be

interpreted simply as w = 2Fc/(3πR). We note that a fluid

capillary bridge (with fixed fluid volume) between a rigid

sphere and a flat rigid surface gives rise to a (adiabatic) pull-

off force Fc = 4πRγ, where we have assumed that the fluid

wet the two solids.62 Thus in this limit the “work of adhe-

sion” must be interpreted as w = 8γ/3 ≈ 2.67γ. We believe

that this result holds accurately also when a fluid film exists

at the interface if the fluid film thickness is large compared to

the root-mean-square roughness amplitude. In fact, we have

recently performed experiments where the substrate was a

thick (d ≈ 1 cm) silicone oil slab (the same oil as used here),

and where Fc = 4πRγ was found to hold accurately.73

In the opposite limit where the surface roughness ampli-

tude is much larger than the oil film thickness the JKR theory

is approximately valid with w = 2γ (see Ref. 74). For finite

pull-off speeds, the pull-off force is also influenced by the fluid

viscosity.

Figure 35 shows the “work of adhesion” during retrac-

tion (separation) (filled circles) and during approach (open

circles), as a function of the number of contacts between the

glass ball and the rubber surface. The glass ball and rubber

surface are covered by ∼10 µm film of silicone oil (viscosity

≈0.35 Pa s). The red and blue circles are the work of adhe-

sion for the pull-off (and approach) velocities 0.9 µm/s and 35

µm/s, respectively.

In this case, the work of adhesion is determined by the

silicone oil capillary bridge formed between the glass ball and

the rubber surface. This results in an adhesive interaction force,

which extends over much larger separation distance (or time)

then for the dry state. This is illustrated in Fig. 36 which shows

FIG. 35. The work of adhesion during retraction (separation) (filled circles)

and during approach (open circles), as a function of the number of contacts for

the rubber surface. The glass ball and rubber surface were originally cleaned

with acetone and after covered with a thin film of silicone oil (viscosity

≈ 0.65 Pa s). The red and blue circles are the work of adhesion for the pull-off

or approach velocities 0.9 µm/s and 35 µm/s, respectively.

the interaction force as a function of time close to a detachment

for the drive (pull-off) speed vz = 0.9 µm/s. Note that ∼100 s

(or the distance ∼100 µm) is necessary in order to break the

junction, in contrast to the ∼1 s (or the distance ∼1 µm) for

the dry surface [see Fig. 23(a) below].

In this study, we do not know the exact oil thickness but if

the fluid film is thinner than the root-mean-square roughness

amplitude, the adiabatic work of adhesion w0 resulting from

a capillary bridge is just twice the surface tension γ of the

liquid, w0 = 2γ (see Ref. 74). The actual work of adhesion is

affected by viscous dissipation in the liquid bridge and, to a

much less extent, in the rubber, which will enhance w during

pull-off (say from w0 to wa) and reduce w during approach (say

from w0 to wb). Here we assume, as found to hold to a good

approximation for the viscoelastic crack propagation case, that

the enhancement factor wa/w0 = (1 + f ) during pull-off is also

determining (approximately) the reduction factor wb/w0 = 1/(1

+ f ) during approach. In this case w0 = (wawb)1/2.

The silicone oil we use has the surface tension γ ≈ 0.02

J/m2 so we get w0 = 2γ ≈ 0.04 J/m2. From Fig. 35, the work of

adhesion at the lowest pull-off speed 0.9 µm/s iswa ≈ 0.05 J/m2

during pull-off and wb ≈ 0.03 J/m2 during approach. Assuming

w0 ≈ (wawb)1/2, we get the adiabatic work of adhesion ≈0.04

J/m2 in good agreement with the expected adiabatic work of

adhesion.

FIG. 36. The interaction force between the glass ball and the bromobutyl

rubber as a function of time close to a detachment for surfaces covered by a

thin film of silicone oil (viscosity 0.35 Pa s). The drive speed is vz = 0.9 µm/s.
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FIG. 37. The relation between the force and the displacement of the drive

during a contact cycle of the glass ball against an approximately rigid (in the

case PMMA) plate. The effective spring constant during retraction depends

slightly on the retraction velocity but is of order k ≈ 200 N/m.

The work of adhesion at the higher pull-off speed (35

µm/s) is larger than for the lower speed due to the increased

viscous dissipation. For 35 µm/s from Fig. 35, we getwa ≈ 0.13

J/m2 and wb ≈ 0.015 J/m2. Thus we get (wawb)1/2
≈ 0.04 J/m2

again in agreement with the expected adiabatic work of

adhesion. In Ref. 73, where we studied adhesion during (slow)

cross-linking of silicone oil, we did not observe any effect of

the silicone oil viscosity on the pull-off force until very close

to the gel point of the silicone oil (where the viscosity becomes

huge), but we attribute this to the different experimental con-

ditions. In Ref. 73, the glass ball interacted with a bulk oil

sample, while in the present study the silicon oil film is very

thin, and the viscous energy dissipation is much larger in a

thin fluid film (assuming similar flow velocities) than in a bulk

sample.

APPENDIX H: ROPE SPRING CONSTANT

The nylon rope connecting the glass ball to the pulley can

be considered as an effective spring with the spring constant k.

We can measure k by moving the glass ball toward and away

from a hard substrate. Figure 37 shows the relation between

the force and the displacement of the drive during a contact

cycle of the glass ball against an approximately rigid (in the

case PMMA) plate. The effective spring constant during retrac-

tion depends slightly on the retraction velocity but is of order

k ≈ 170–190 N/m.

APPENDIX I: FLUID SQUEEZE-IN, NUMERICAL
RESULTS

For adhesion in the silicone oil, the interaction force dur-

ing retraction is strongly influenced by the fluid viscosity,

which results in a much slower time variation in the inter-

action force at pull-off than the very fast (abrupt) (within 1 s)

variation observed in water. Here we present a very simple

approximate theory for the influence of the silicone oil on the

interaction force during pull-off.

Consider a glass ball squeezed against the rubber surface

in a fluid. Let t = 0 denote the time during pull-off when the

force on the substrate vanishes (which was denoted by t0 in

Appendix F). Let u0 be the average separation between the

surfaces in the nominal contact area at time t = 0. When (dur-

ing unloading) the interacting force vanishes, there is a fluid

pressure force at the interface and an equal (but of opposite

sign) asperity contact pressure force. Here we will make the

assumption that when F = 0 the fluid pressure force vanishes

(which implies that the repulsive and attractive rubber-glass

asperity forces balance each other). To calculate the depen-

dency of the interaction force F(t) on time, we assume that for

t > 0 the only force acting on the ball is the viscous force from

the fluid. Thus we assume that the attractive glass-rubber inter-

action matters only in that it determined the initial (average)

surface separation u(0) = u0 when F = 0.

When a rigid ball (radius R) is squeezed against a flat rigid

surface in a fluid with the viscosity η, the relation between the

force F and the (minimum) surface separation u is given by75,76

F = −6πηR2 u̇

u
. (I1)

As shown in Appendix J, this equation can also be derived

by considering the fluid squeeze-out for a circular plate with

radius r = (2Ru)1/2 (see Fig. 38).

The interfacial separation velocity u̇(t) is not the same as

the drive velocity vz because of the elasticity in the system.

Thus the nylon rope has an effective spring constant k ≈ 100

–200 N/m (see Appendix H), and the rubber substrate too will

deform elastically in response to the viscous force F acting

on it. As a result F = k∗(s − u), where s = s0 + vt is the drive

displacement and k∗ < k is an effective (combined) spring

constant (see Appendix J). Combining this equation with (I1)

gives the equation of motion for u(t) (here we have neglected

inertia effects)

6πηR2 u̇

u
= k∗(s − u). (I2)

Let t = 0 correspond to the point during retraction where

the force on the substrate from the ball vanishes (F = 0). We

assume that when F ≤ 0 only the viscous force acts on the ball

(and the substrate). Since F = 0 at t = 0 from (I1), we get that

u̇ = 0 for t = 0. The second boundary condition u(0) = u0 is

determined by the separation between the glass ball and the

rubber substrate at t = 0 and will be used as a fitting parameter

(the only fitting parameter) in the following study.

We have solved (I2) using numerical integration (see

Appendix J). In Figs. 39, 40, and 23(c), we compare the the-

ory predictions with the measured data for the pull-off speeds

vz = 35, 6.3, and 1.75 µm/s. The results are for the bromobutyl

FIG. 38. The rate of fluid squeeze-out for the sphere with radius R is the same

as for a circular disc with radius r = (2Ru)1/2.
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FIG. 39. The force F(t) acting on the substrate during pull-off of a glass ball

(diameter 2R = 3 cm) in silicone oil. The pull-off speed vz = 35 µm/s. The

different symbols are from different pull-off cycles, shifted along the time

axis so that the minimum of the pull-off force occurs at the same time point.

The green line is the theory prediction assuming that only a viscous drag

force acts on the rubber substrate. For the bromobutyl rubber in silicone oil

with the viscosity η = 0.35 Pa s. For the theory curve, we have assumed that

the initial separation (at F = 0) between the glass ball and the substrate is

u0 = 1.8 µm.

FIG. 40. The same as in Fig. 39 but for the pull-off speed vz = 6.3 µm/s.

For the theory curve, we have assumed that the initial separation (at F = 0)

between the glass ball and the substrate is u0 = 1.65 µm.

rubber in silicone oil with the viscosity η = 0.35 Pa s. The fig-

ures show the force F(t) acting on the substrate during pull-off

of a glass ball (diameter 2R = 3 cm) in silicone oil. The differ-

ent symbols are from different pull-off cycles, shifted along the

time axis so that the minimum of the pull-off force occurs at

the same time point. The green lines are the theory prediction

assuming that only a viscous drag force acts on the rubber

FIG. 41. The same as in Fig. 40 but for the waiting time 7200 s. We have

assumed the initial separation (at F = 0) u0 = 1.3 µm.

substrate. The separation u0 when F = 0 is found to be u0 = 1.8,

1.65, and 1.4 µm. Note that u0 decreases with decreasing

(approach and pull-off) speed vz. We interpret this as resulting

from the longer glass-rubber contact time at the lower speed

(the contact time is proportional to 1/vz). As a further test, we

performed another experiment with the pull-off velocity 6.3

µm/s where we kept the ball in contact with the rubber for

7200 s before removing the contact. In this case, we found

that using u0 = 1.3 µm gives good agreement with the exper-

iment, see Fig. 41. This is considerable smaller than 1.65 µm

found without the waiting time period. This is in accordance

with the results obtained in Sec. VI E, where we found that for

the clean glass ball the longer contact time results in a stronger

adhesive interaction between the glass ball and the rubber, and

hence to a smaller u0.

APPENDIX J: FLUID SQUEEZE-IN, THEORY

Consider the fluid squeeze flow between a rigid sphere

and a flat rigid surface. Let u(t) denote the minimum separa-

tion between the surfaces. Most of the resistance toward fluid

squeeze-out occurs in the region where the separation between

the surfaces arises from the area where the separation between

the surfaces is of order a few times u(t), say when the separa-

tion varies from u(t) to 2u(t). When u ≪ R, the radius of this

circular region is r ≈ (2Ru)1/2 (see Fig. 38). In a first approx-

imation, we can replace the sphere with a circular disc with

radius r separated from the flat substrate with the distance u.

For a circular disk, the relation between the applied force F

and the separation u is given by the well-known relation (see,

e.g., Refs. 1 and 2)

F = −
3π

2
ηr4 u̇

u3
.

Substituting r ≈ (2Ru)1/2 in this equation gives

F = −6πηR2 u̇

u
, (J1)

which agrees with the exact result (I1).

Let us now study the fluid squeeze flow when the drive is

moved away (pull-off) from the substrate with the speed v . We

will neglect inertia effects. Thus, the same force F which acts

on the sphere from the driving spring also acts on the substrate.

This will result in some elastic deformation of the substrate.

Let q denote the displacement of the substrate at the center

of the contact. If a uniform stress act on a semi-infinite solid

within a circular region with radius r, the displacement q is

related to the force F via F = k ′q, where k ′ = (π/2)rE∗ [where

E∗ = E/(1 − ν2), where E and ν are the Young’s modulus

and the Poisson ration of the rubber]. Using this equation and

F = k(s − w), where s = s0 + vt is the displacement of the drive

and w is the displacement of the sphere and k is the spring

constant of the driving spring (see Appendix H), we get the

separation at the interface

u = w − q = s −

(

1

k
+

1

k ′

)

F = s −
1

k∗
F.

In the present study k≪ k ′ and the effective substrate (rubber)

spring constant k ′ is not very important for the results presented

below.
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Using (J1) this gives

6πηR2 u̇

u
= k∗(s − u)

or

u̇ = (s − u)uα, (J2)

where

α =
k∗

6πηR2
. (J3)

Note that since k ′ = (π/2)rE∗ = (π/2)(2Ru)1/2E∗ depends on u

so will α = α(u). The solution of (J2) depends on the initial

condition for u(t) for t = 0 and on s0. These values depend on the

history of the contact prior to the time t = 0, which depends on

the influence of the surface roughness on the contact between

the ball and the rubber substrate.

Let us first consider a general case, where u(0) = u0 and

u̇(0) = v0. Writing

u = v0t + u0 + vξ (J4)

this gives ξ = ξ̇ = 0 for t = 0. Substituting (J4) in (J2) gives

v0 + v ξ̇ = (s0 + vt − v0t − u0 − vξ)uα. (J5)

For t = 0 from (J2) we get v0 = (s0 − u0)u0α0, where

α0 = α(u0). Thus s0 − u0 = v0/(α0u0). Substituting this in

(J5) gives

ξ̇ = −
v0

v
+

[
v0

vα0u0

+

(

1 −
v0

v

)

t − ξ

]
uα(u), (J6)

where

α =
k

6πηR2

(

1 +
k

k ′
0

(

u0

u

)1/2
)−1

, (J7)

with k ′
0
= (π/2)(2Ru0)1/2E∗.

Let t = 0 correspond to the point during retraction where

the force on the substrate from the ball vanishes (F = 0). We

assume that when F ≤ 0 only the viscous force acts on the ball

(and the substrate). Since F = 0 at t = 0 from (J1), we get that

u̇ = 0 at t = 0. Thus v0 = 0 and (J6) reduces to

ξ̇ = (t − ξ)(u0 + vξ)α(u0 + vξ). (J8)

We have solved (J8) using numerical integration. In

Figs. 39, 40, and 23(c), we show the force F(t) acting on the

FIG. 42. The theoretically estimated interaction force between the glass ball

(diameter 2R = 3 cm) and a flat substrate as a function of time close to

a detachment in water (viscosity η = 0.001 Pa s). The drive speed is vz

= 0.9 µm/s and the initial separation between the ball and the substrate is

u0 = 1 µm.

substrate during pull-off of a glass ball (diameter 2R = 3 cm)

in silicone oil (with the viscosity η = 0.35 Pa s), for the pull-

off speeds vz = 35, 6.3, and 1.8 µm/s. The green lines are

the theoretical predictions, assuming that only a viscous drag

force acts on the rubber substrate, and the different symbols

are the measured data. In Fig. 23(c), we show measured data

for several pull-off events, shifted along the time axis, so the

minimum interaction force coincides. In the calculations, we

have assumed the initial ball-substrate separation u0 = 1.8,

1.65, and 1.4 µm, respectively.

In Fig. 41, we show the same as in Fig. 40 but for the

waiting time 7200 s. We have assumed the initial separa-

tion (at F = 0) u0 = 1.3 µm. The interfacial separations (for

F = 0) used above, u0 = 1.3–1.8 µm, are all consistent with

what is expected from contact mechanics calculations (see

Sec. III A).

For water, the fluid flow has a negligible effect on the

observed pull-off force. This is illustrated in Fig. 42, which

shows the theoretically estimated time dependence of inter-

action force between the glass ball (diameter 2R = 2.5 cm)

and a flat substrate in water (viscosity η = 0.001 Pa s). The

drive speed is vz = 0.9 µm/s and the initial separation between

the ball and the substrate is u0 = 1 µm. Note that the interac-

tion force is ∼100 times smaller than the measured one, and

the interaction force decays slower with increasing time than

observed [compare Figs. 42 and 23(b)].
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