000860473 001__ 860473
000860473 005__ 20210130000522.0
000860473 0247_ $$2doi$$a10.1063/1.5037136
000860473 0247_ $$2ISSN$$a0021-9606
000860473 0247_ $$2ISSN$$a1089-7690
000860473 0247_ $$2ISSN$$a1520-9032
000860473 0247_ $$2Handle$$a2128/21541
000860473 0247_ $$2pmid$$apmid:29907043
000860473 0247_ $$2WOS$$aWOS:000435446400059
000860473 037__ $$aFZJ-2019-01227
000860473 082__ $$a530
000860473 1001_ $$0P:(DE-HGF)0$$aTiwari, A.$$b0$$eCorresponding author
000860473 245__ $$aRubber friction: The contribution from the area of real contact
000860473 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2018
000860473 3367_ $$2DRIVER$$aarticle
000860473 3367_ $$2DataCite$$aOutput Types/Journal article
000860473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549286854_13266
000860473 3367_ $$2BibTeX$$aARTICLE
000860473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860473 3367_ $$00$$2EndNote$$aJournal Article
000860473 520__ $$aThere are two contributions to the friction force when a rubber block is sliding on a hard and rough substrate surface, namely, a contribution Fad = τf A from the area of real contact A and a viscoelastic contribution Fvisc from the pulsating forces exerted by the substrate asperities on the rubber block. Here we present experimental results obtained at different sliding speeds and temperatures, and we show that the temperature dependency of the shear stress τf, for temperatures above the rubber glass transition temperature Tg, is weaker than that of the bulk viscoelastic modulus. The physical origin of τf for T > Tg is discussed, and we propose that its temperature dependency is determined by the rubber molecule segment mobility at the sliding interface, which is higher than in the bulk because of increased free-volume effect due to the short-wavelength surface roughness. This is consistent with the often observed reduction in the glass transition temperature in nanometer-thick surface layers of glassy polymers. For temperatures T < Tg, the shear stress τf is nearly velocity independent and of similar magnitude as observed for glassy polymers such as PMMA or polyethylene. In this case, the rubber undergoes plastic deformations in the asperity contact regions and the contact area is determined by the rubber penetration hardness. For this case, we propose that the frictional shear stress is due to slip at the interface between the rubber and a transfer film adsorbed on the concrete surface
000860473 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000860473 588__ $$aDataset connected to CrossRef
000860473 7001_ $$0P:(DE-HGF)0$$aMiyashita, N.$$b1
000860473 7001_ $$0P:(DE-HGF)0$$aEspallargas, N.$$b2
000860473 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b3$$ufzj
000860473 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5037136$$gVol. 148, no. 22, p. 224701 -$$n22$$p224701$$tThe journal of chemical physics$$v148$$x1089-7690$$y2018
000860473 8564_ $$uhttps://juser.fz-juelich.de/record/860473/files/1.5037136.pdf$$yPublished on 2018-06-12. Available in OpenAccess from 2019-06-12.
000860473 8564_ $$uhttps://juser.fz-juelich.de/record/860473/files/1.5037136.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-06-12. Available in OpenAccess from 2019-06-12.
000860473 909CO $$ooai:juser.fz-juelich.de:860473$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b3$$kFZJ
000860473 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860473 9141_ $$y2018
000860473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860473 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860473 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000860473 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000860473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860473 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860473 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860473 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860473 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860473 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860473 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860473 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860473 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000860473 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860473 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860473 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000860473 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860473 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000860473 980__ $$ajournal
000860473 980__ $$aVDB
000860473 980__ $$aUNRESTRICTED
000860473 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860473 980__ $$aI:(DE-Juel1)PGI-1-20110106
000860473 980__ $$aI:(DE-82)080009_20140620
000860473 980__ $$aI:(DE-82)080012_20140620
000860473 9801_ $$aFullTexts