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The dependency of adhesion and friction on electrostatic attraction
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I develop a general mean-field theory for the influence of electrostatic attraction between two solids

on the contact mechanics. I assume elastic solids with random surface roughness. I consider two

cases, namely, with and without an electrically insulating layer between the conducting solids. The

former case is important for, e.g., the finger–touch screen interaction. I study how the electrostatic

attraction influences the adhesion and friction. For the case of an insulating layer, I find that when

the applied nominal contact pressure is relatively small, as the applied voltage increases, there is a

sharp increase in the contact area, and hence in the friction, at a critical voltage. Published by AIP

Publishing. https://doi.org/10.1063/1.5024038

I. INTRODUCTION

Sliding friction depends sensitively on the nature of the

materials involved, in particular, at the sliding interface where

the surface topography, contamination films, and the atomic

and molecular nature of the contacting surfaces strongly influ-

ence the friction.1–3 However, the sliding friction also depends

on external conditions such as temperatures and the humidity

and on mechanical vibrations and electric fields. Thus it has

been shown that ultrasonic vibrations act to reduce friction,

e.g., between the finger and a counter surface.4 Similarly, an

applied electric voltage between two solids often result in the

accumulation of charges of opposite sign on the surfaces at

the contacting interface. This results in an electrostatic attrac-

tion, denoted electroadhesion, which adds to the external load

(squeezing-force) and increases the area of contact and the slid-

ing friction force. This effect is now intensively studied, e.g.,

for grippers for robotics,5 and in the context of touch screen

applications, where one is interested in the friction between

a finger and the touch screen.6–8 These types of displays

have seen a wide variety of applications such as increasing

the physicality of touch interaction or for influencing shape

perception.

The term electroadhesion is drawn from the 1923 work

of Danish scientists Johnsen and Rahbek.9 Working with pol-

ished lithographic stone and metal surfaces, this term was used

to describe the physical phenomenon of considerable adhesion

which developed when the highly resistive stone was placed

on top of a metal plate and a high voltage was applied between

them.

I develop a general mean-field theory for the influence

of electrostatic attraction between two solids on the contact

mechanics. I consider first the limiting case when an electric

insulating film separate two conducting bodies and where the

total voltage drop occurs over the insulating film. This may

never hold strictly in reality since all materials have a finite

electric conductivity. Still if the contact time is short enough,

the leak current results in negligible charge transfer, and in this

a)URL: www.MultiscaleConsulting.com.

case assuming a perfectly insulating material is a very good

approximation.

Next I assume two electric conducting solids. Because of

surface roughness, the contact between the solids is never per-

fect. This will result in a contact resistance and in voltage drop

∆V over a narrow region at the interface, which in general

is smaller than the applied voltage V. Hence, in this case too,

there will be an electric field in the non-contact region between

the solids which result in electroadhesion. Here I note that

for elastic solids the contact resistance is proportional to the

mechanical contact stiffness, a fundamental result first derived

by Barber10 (see also Refs. 11 and 12). We will make use of

this result below where the contact stiffness and other con-

tact mechanics properties are obtained using the Persson et al.

contact mechanics theory.12–17

In the literature, there is a discussion about the mathemat-

ical relation between the adhesion (and friction) force and the

applied voltage. Several different equations have been pre-

sented and there is no general consensus about which one

is most accurate.18 In this paper, I consider this problem in

greater detail. I assume that the interfacial separation u(x, y)

is arbitrary, except I make the small-slope approximation, i.e.,

I assume |∇u| < 1. The small-slope approximation is usually

used in fluid dynamics at interfaces, where it results in a huge

simplification of the Navier Stokes equations (which reduces

to the Reynolds equation when |∇u|≪ 1).

This paper is organized as follows: In Secs. II and III,

using the small-slope approximation, I derive expressions for

the average electroadhesive stress for the two cases discussed

above. Since the interfacial separation u(x, y) depends on the

attractive electrostatic stress, in Sec. IV I present a mean-field

treatment of the electroadhesion force, where u(x, y) is mod-

ified by the adhesion stress. In Sec. V I present numerical

results. Section VI contains a discussion and Sec. VII contains

the summary and conclusion.

II. ELECTROSTATIC ATTRACTION:
INSULATING SOLIDS

We consider the contact configuration shown in Fig. 1. We

assume the solids make atomic contact in a fraction A/A0 of the
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FIG. 1. An elastic solid with surface roughness above a rigid solid with a flat

surface. Both solids are conducting materials with insulating surface layers

of thickness d1 and d2 and dielectric constants ǫ1 and ǫ2. An electric volt-

age difference V occurs between the two conducting solids. The interfacial

separation u = u(x) depends on the lateral coordinate x = (x, y).

nominal contact area A0 (in the figure A = 0). The non-contact

region is filled with air, but we can consider this region as

vacuum because the dielectric constant of air (ǫair ≈ 1.000 59)

is nearly the same as that of vacuum (ǫ = 1).

The electrostatic potential satisfies ∇2φ = 0 everywhere

except at the different interfaces where the material proper-

ties change. The solids at the interface have surface rough-

ness given by the functions h1(x) and h2(x) before contact

(undeformed height profiles), where x = (x, y) denote the

position vector in the xy-plane. We define the combined

height profile h(x) = h1 � h2. Here we will make the small

slope approximation |∇h| ≪ 1. When the solids are in con-

tact, the interfacial separation will be denoted by z = u(x)

which differ from h(x) because of elastic deformation of the

solids. Assuming the small slope approximation case, we can

approximate

∇2φ ≈ ∂
2φ

∂z2
≈ 0.

In this case, we can write the electric potential as (see

Fig. 1)

φ = V + b1z for 0 < z < d1,

φ = a + b(z − d1) for d1 < z < u(x) + d1,

φ = b2(z− u(x)− d1 − d2) for u(x) + d1 < z < u(x) + d1 + d2.

Note that φ = V for z = 0 and φ = 0 for z = u(x) + d1 + d2.

At the two solid-vacuum interfaces z = d1 and z = u(x) + d1,

the electric potential φ and ǫEz (where Ez = �∂φ/∂z is the

z-component of the electric field) must be continuous. This

gives the equations

a = V + b1d1, a + bu = −b2d2,

b = ǫ1b1, b = ǫ2b2.

From these equations, we get

b = − V

u + d1/ǫ1 + d2/ǫ2

.

The electric field in the vacuum region

Ez = −∂φ
∂z
= −b =

V

u + d1/ǫ1 + d2/ǫ2

.

We will denote h0 = d1/ǫ1 + d2/ǫ2 so that

Ez(x) = − V

u(x) + h0

. (1)

The normal stress acting on the surfaces at the solid-vacuum

interfaces is given by the zz component of the Maxwell stress

tensor which gives

σzz(x) =
ǫ0

2
E2

z =
ǫ0

2

(

V

u(x) + h0

)2

.

We are interested in the stress averaged over the surface rough-

ness. Let P(p, u) be the probability distribution of interfacial

separations (see Ref. 17) so that

〈σzz〉 = ǫ0

2
V2

∫ ∞
0

du P(p, u)
1

(u + h0)2
. (2)

We can write

P(p, u) =
A

A0

δ(u) + P1(p, u),

where A/A0 is the relative contact area and where P1(p, u) is

normalized so that∫ ∞
0

du P1(p, u) = 1 − A

A0

.

Thus we can write

〈σzz〉 = ǫ0

2
V2


1

h2
0

A

A0

+

∫ ∞
0

du P1(p, u)
1

(u + h0)2


. (3)

The study above can be easily extended to the case where

the applied voltage V depends on time, V = V (t). If we define

the Fourier transform

V (ω) =
1

2π

∫
dtV (t)eiωt

so that

V (t) =

∫
dωV (ω)e−iωt .

Then the derivation above is unchanged and gives

Ez(ω, x) = − V (ω)

u(x) + h0(ω)
,

where

h0(ω) =
d1

ǫ1(ω)
+

d2

ǫ2(ω)
,

where ǫ1(ω) and ǫ2(ω) are the dielectric functions of the two

media. For example, if V (t) = V0 cosω0, then

V (ω) =
1

2
V0[δ(ω + ω0) + δ(ω − ω0)]

and

Ez(t, x) = −
∫

dω
V (ω)

u(x) + h0(ω)
e−iωt

=

1

2
V0

[
e−iω0t

u(x) + h0(ω0)
+

eiω0t

u(x) + h0(−ω0)

]

= V0Re

[
e−iω0t

u(x) + h0(ω0)

]
,

where we have used that h0(−ω) = h∗
0
(ω). If we define the

angle φ via

u(x) + h0(ω0) = |u(x) + h0(ω0)|eiφ ,

we can write

Ez(t, x) = V0

cos(ω0t + φ)

|u(x) + h0(ω0)| . (4)
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The zz-component of the stress tensor becomes

σzz(t, x) =
ǫ0

2

V2
0

2

(

1

|u(x) + h0 |2
+ Re

[
e−2iω0t

(u(x) + h0)2

])

=

1

4
ǫ0V2

0

1 + cos(2ω0t + 2φ)

|u(x) + h0(ω0)|2 .

The normal stress averaged over the surface roughness

becomes

〈σzz〉 = 1

4
ǫ0V2

0

∫ ∞
0

du P(p, u)
1 + cos(2ω0t + 2φ)

|u + h0(ω0)|2 . (5)

III. ELECTROSTATIC ATTRACTION:
CONDUCTING SOLIDS

In Sec. II, we assumed that the solids at the interface are

electric insulators which can be described in the relevant fre-

quency range by a real dielectric function ǫ(ω). However most

solids have a non-zero electric conductivity κ. In this case, one

needs in general to take into account that when an electric volt-

age is applied between the solids, an electric current will flow

through the asperity contact regions and the voltage drop ∆V

over the contacting interface will depend on the electric con-

ductivities κ1 and κ2 of the solids and on the contact resistance

(see below). In this section, we will consider this problem in

some detail.

Consider a slab of thickness d of a material with the elec-

tric conductivity κ. Assume a voltage V acts between the two

ends of the slab. This will result in an electric field E = V /d

and an electric current density J = κE in the slab. If the elec-

tric field is due to a surface charge density ne on the surface

z = 0, then E = ne/ǫǫ0. We define the characteristic time (or

relaxation time) t = τ so that Jτ = ne. We can interpret τ as the

time it takes for the surface charge ne to flow from the upper

surface to the bottom surface (see Fig. 2). We get Jτ = κEτ

= κneτ/ǫǫ0. Using Jτ = ne gives τ = ǫǫ0/κ. If an experiment

is performed during a time period t ≪ τ, then we can neglect

the leakage of electric charge from the upper surface, and in

this case, the analysis in Sec. II is valid. However, for times

t ≫ τ, the charge initially localized to the upper surface will

have moved to the surface at the interface. In this section, we

assume that the latter case holds.

Figure 3 shows two elastic blocks, with finite electric

conductivity, squeezed together with a nominal contact pres-

sure p0. If a voltage V is applied between the upper and

lower flat surfaces of the two blocks, an electric current J

FIG. 2. (a) If the upper slab is a material with the electric conductivity κ

and the (positive) surface charge ne on the top surface, the charge will flow

toward the bottom surface. (b) After a characteristic time of order τ = ǫǫ0/κ,

the charge is located on the bottom surface close to the negative charged slab

below it.

FIG. 3. Two elastic blocks, with finite electric conductivity, squeezed together

with a nominal contact pressure p0. If a voltage V is applied between the upper

and lower flat surfaces of the two blocks, an electric current J will flow from

the upper surface to the lower surface. Far away from the contacting interface,

the current is uniform in the xy-plane but close to the interface highly non-

uniform as the current will flow through the area of real contact. A potential

drop ∆V will occur over a narrow region at the interface, which determines

the electric contact transfer coefficient α via J = α∆V.

will flow from the upper surface to the lower surface. Far

enough away from the contacting interface, the current is uni-

form in the xy-plane, but close to the interface, it is highly

non-uniform as the current will flow through the area of real

contact. The distance ±δ from the interface where the electric

current is approximately uniform in the xy-plane is deter-

mined by the average separation between the macroasperity

contact regions, which depends on the roll-off wavelength

of the surface roughness power spectrum.11 A potential drop

∆V = V2 � V1 will occur over the narrow region of width ∼2δ

at the interface, which determines the electric contact con-

ductivity α via J = α(V2 � V1). Since the voltage ∆V is the

quantity which determines the Coulomb attraction between the

surfaces, we need to estimate this quantity.

The electric current

J = κ2(V − V2)/d2, J = κ1(V1 − 0)/d1.

Combining these equations with J = α(V2 � V1) gives

J =
αV

1 + α(d1/κ1 + d2/κ2)
(6)

and

∆V =
V

1 + α(d1/κ1 + d2/κ2)
. (7)

For the elastic contact between randomly rough sur-

faces, it has been shown that the electric contact conductivity

is10–12

α =
2κ

E∗
K⊥, (8)

where

K⊥ = −dp0

dū
(9)

is the mechanical contact stiffness and

1

E∗
=

1 − ν2
1

E1

+
1 − ν2

2

E2

(10)

is the effective Young’s modulus (E1 and ν1 are the Young’s

modulus and Poisson ratio of solid 1 and similar for solid 2),

and

1/κ = 1/κ1 + 1/κ2 (11)
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is the effective electric conductivity (κ1 is the electric conduc-

tivity of solid 1 and κ2 is the electric conductivity of solid 2).

Substituting (8) into (7) gives

∆V =
V

1 + 2d0K⊥/E∗
, (12)

where

d0 = κ

(

d1

κ1
+

d2

κ2

)

=

κ1d2 + κ2d1

κ1 + κ2
. (13)

The relation between the applied nominal contact pressure

p0 and the average interfacial separation ū can be calculated

using the Persson contact mechanics theory. The average inter-

facial separation was derived in Refs. 14 and 15 for the case

when the nominal contact pressure is not too high (i.e., not

close to complete contact) and not so small that finite size

effects become important (in which case the two solids make

contact only at a few of the highest asperities),

p ≈ βE∗ exp(−ū/u0) (14)

or

ū/u0 = log(βE∗/p),

where u0 ≈ 0.5hrms, where hrms is the rms roughness of the

(combined) surface roughness profile. Thus in this case, we

have

K⊥ = p0/u0

and

α =
2κp0

E∗u0

. (15)

Using (8) and (9) gives

∆V =
V

1 + 2d0p0/(E∗u0)
. (16)

Note that if d1 = d2 then d = d1 and the voltage drop ∆V

over the contacting interface is independent of the electric

properties of the material; i.e., it depends only on the surface

roughness and the elastic properties of the solids. The same

result holds if κ1d2 ≫ κ2d1 and d2 ≫ d1 or κ2d1 ≫ κ1d2 and

d1 ≫ d2.

IV. MEAN-FIELD ELECTROSTATIC
ADHESION THEORY

In the simplest approach, one includes the electrostatic

attraction pa = 〈σzz〉 as a contribution to the external load.

Thus we write the effective loading pressure as

p = p0 + pa, (17)

where p0 is the applied pressure. Intuitively, one expects this

approach to be accurate when the interaction force between

the surfaces is long-range, and a similar approach has been

used for the attraction resulting from capillary bridges19 (see

also Ref. 20). To calculate pa = 〈σzz〉, we need to know the

probability distribution P(p, u). For randomly rough surfaces,

the function P(p, u) was calculated approximately in Ref. 17.

For the case of insulating solids (Sec. II), we get from (17)

and (2)

p = p0 +
ǫ0

2
V2

∫ ∞
0

du P(p, u)
1

(u + h0)2

which we can also write as

V2
=

2(p − p0)/ǫ0

∫ ∞0 du P(p, u)(u + h0)−2
(18)

from which we can easily calculate V as a function of the

nominal contact pressure p. For conducting solids (Sec. III)

including only the surface charge at the interface, we

obtain

p = p0 +
ǫ0

2

∫ ∞
ac

du P1(p, u)
∆V2

u2

or using (12),

p = p0 +
ǫ0

2
V2

∫ ∞
ac

du P1(p, u)
1

u2(1 + 2d0K⊥(p)/E∗)2
, (19)

where we have indicated that the stiffness K⊥ depends on the

pressure p. Note that in these equations we use the prob-

ability distribution P1(p, u) rather than P(p, u) = P1(p, u)

+ [A(p)/A0]δ(u) since we assume that there is no attrac-

tion coming from the contact area in the case of conducting

materials. From (19), we get

V2
=

2(p − p0)(1 + 2d0K⊥(p)/E∗)2/ǫ0

∫ ∞ac
du P1(p, u)u−2

. (20)

In (19), ac is a cut-off distance. In the numerical study below, I

use ac = 10 nm. The region in space where the surface separa-

tion is very small (here u < uc) forms narrow strips around the

area of real contact; we denote these regions as the rim-area.

Since the electric potential is continuous in the contact regions,

we expect that the potential drop between the surfaces in the

rim-area is much smaller than the (average) potential drop ∆V

over the interface. I attribute the cutoff ac as due to this effect,

but at present I am not aware of any theory to predict the

optimum ac to be used in (19).

The relative contact area A/A0 can be obtained using

A

A0

≈
√
π

2
erf

(

2p

h′E∗

)

, (21)

where h′ is the surface rms slope of the combined sur-

face roughness profile. This equation is valid for the con-

tact between homogeneous elastic solids with random surface

roughness. When A/A0 ≪ 1, Eq. (21) reduces to

A

A0

≈ 2p

h′E∗
.

From the knowledge of A, we obtain the friction force from

Ff = Aτf. (22)

The frictional shear stress τf is usually independent of the

asperity contact pressure p∗ = pA0/A as long as p∗ is less than a

few MPa. As an example, which is of interest for grippers for

robotics, for silicone rubber [polydimethylsiloxane (PDMS)]

sliding (in complete contact) on a smooth glass surface at

the sliding speed v ≈ 1 mm/s, experiments have shown that

τf ≈ 0.1 MPa. At the same sliding speed, for other types of

rubber,21,22 τf ≈ 1–10 MPa, and for the human skin,23,24 which

is of interest for touch screens, τf ≈ 15 MPa. This is also sim-

ilar to what is observed for plastics (polymers below the glass

transition temperature) and also as expected from molecular

dynamics calculations.25
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In the numerical results presented in Sec. V, we use the

full (numerically generated) relation ū(p) between the aver-

age interfacial separation and the nominal contact pressure

p, as determined by the Persson contact mechanics theory.

Similarly, we also use the full expression for the probabil-

ity distribution P(p, u) of interfacial separations. However,

let us first consider the simplest possible approximation for

P(p, u), namely, P(p, u) ≈ δ(u � ū), where ū(p) is the aver-

age interfacial separation when the nominal contact pressure

equals to p. In addition, let us use the ū(p) relation derived

in Ref. 14 for the case when the nominal contact pressure

is not too high (i.e., not close to complete contact), and

not so small that finite size effects become important (in

which case the two solids makes contact only at a few of

the highest asperities17), as given by (14). In this case, (18)

reduces to

V2
= (p − p0)

2

ǫ0

[
u0 log

(

βE∗

p

)

+ h0

]2

(23)

and (20) reduces to

V2
= (p − p0)

2

ǫ0

[(
u0 + 2

d0p

E∗

)

log

(

βE∗

p

)]2

. (24)

These equations are in fact not accurate. Thus the average

of 1/(u + h0)2 is in most cases very different from 1/(ū + h0)2;

i.e., it is not a good approximation to replace 〈(u + h0)−2〉
with (〈u〉 + h0)−2, where 〈..〉 stands for averaging using the

height distribution P(p, u). The difference between the two

averaging procedures depends on h0, but in finger applications,

the former expression is typically ∼10 times (or more) larger

than the latter expression. A similar conclusion holds for the

approximation (24), where the result depends on the cut-off

distance ac.

From the equations above it is clear that for a given surface

roughness power spectrum, V2/E∗ depends only on p/E∗ and

p0/E∗. Thus, for example, V2/E∗ as a function of p/E∗ for

p0 = 104 Pa and E∗ = 106 Pa is the same curve as V2/E∗ as a

function of p/E∗ for p0 = 105 Pa and E∗ = 107 Pa.

V. NUMERICAL RESULTS

Let us now present some numerical results. In the cal-

culations, we assume the surface roughness power spectrum

shown in Fig. 4. The surface is self-affine-fractal, with the

FIG. 4. The surface roughness power spectrum as a function of the wavenum-

ber (log-log scale). The surface is self-affine-fractal, with the rms roughness

amplitude 20 µm and the Hurst exponent H = 0.71.

rms roughness amplitude 20 µm and the Hurst exponent

H = 0.71. We assume the effective thickness of the insulat-

ing layer h0 = d1/ǫ1+ d2/ǫ2 = 0.3 µm and the applied pressure

p0 = 10 kPa.

Figure 5 shows (a) the nominal contact pressure p, (b) the

average surface separation ū, and (c) the normalized contact

area A/A0, as a function of the applied voltage V (log-log scale).

Results are shown for solids with the effective Young’s mod-

ulus E = 1 MPa (red curves), E = 10 MPa (blue curves), and

E = 100 MPa (pink curves). The red, blue, and green curves

are with surface roughness with the power spectrum shown in

Fig. 4, while the green line in (a) is for perfectly smooth sur-

faces (no surface roughness). The open squares in (b) and (c)

are the average surface separation and the contact area when

V = 0, respectively, which is determined by the applied

pressure p0 = 10 kPa.

Note that when surface roughness is included, the nomi-

nal (or average) contact pressure decreases. This is due to the

FIG. 5. The nominal contact pressure p (a), the average surface separation ū

(b), and the normalized contact area A/A0 (c), as a function of the applied

voltage V (log-log scale). The effective thickness of the insulating layer

h0 = d1/ǫ1 + d2/ǫ2 = 0.3 µm, and the results are shown for solids with

the effective Young’s modulus E = 1 MPa (red curves), E = 10 MPa (blue

curves), and E = 100 MPa (pink curves). The red, blue, and pink curves are

with surface roughness with the power spectrum shown in Fig. 4, while the

green line in (a) is for perfectly smooth surfaces (no surface roughness). The

open squares in (b) and (c) are the average surface separation and the contact

area when V = 0, respectively, which is determined by the applied pressure

p0 = 10 kPa.
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increase in the separation between the positive and negative

charges, which for a given applied voltage V results in a smaller

electric field and hence smaller (attractive) electrostatic stress.

Note also that for large applied voltage the average surface

separation becomes very small, and in this limit, one obtains

the same result as for smooth surfaces (green curve). Finally,

increasing the elastic modulus increases the surface separa-

tion which, for a given applied voltage, reduces the nominal

contact pressure, increases the average surface separation, and

reduces the contact area.

Figure 6 shows similar results as in Fig. 5 but without

the insulating layers. The effective thickness of the conduct-

ing layer d0 = (κ1d1 + κ2d2)/(κ1 + κ2) = 1 mm, and the

results are shown for solids with the effective Young’s modulus

E = 1 MPa (red curves), E = 10 MPa (blue curves), and

E = 100 MPa (pink curves). The curves are with surface rough-

ness with the power spectrum shown in Fig. 4, and for the

applied nominal contact pressure p0 = 10 kPa. The dashed

FIG. 6. The nominal contact pressure p (a), the average surface separation

ū (b), and the normalized contact area A/A0 (c), as a function of the applied

voltage V (log-log scale). The effective thickness of the conducting layer

d0 = (κ1d1 + κ2d2)/(κ1 + κ2) = 1 mm, and the results are shown for solids

with the effective Young’s modulus E = 1 MPa (red curves), E = 10 MPa (blue

curves), and E = 100 MPa (pink curves). The curves are with surface roughness

with the power spectrum shown in Fig. 4, and for the applied nominal contact

pressure p0 = 10 kPa. The dashed lines in (a) is assuming the full potential

drop V is over the interface.

lines in (a) is assuming the full potential drop V is over the

interface.

VI. DISCUSSION

Electroadhesion has recently gained interest because of

applications such as touch screens or robotics. Many of these

applications involves more complex situations than studied

above, e.g., layered and viscoelastic materials such as the

human skin,23,24 and time varying (usually oscillatory) applied

electric potentials, but the theory presented above can easily

be extended to these situations. Thus, contact mechanics for

layered materials was developed in Ref. 26 and is as simple to

implement as homogeneous materials.

Some applications such as grippers for robotics require

elastically very soft attachment pads in order to adhere to and

move bodies with irregular and complex surface topography.27

Only by having soft attachment pads is it possible to generate

enough contact area (or surfaces at short separation) to obtain

big enough adhesion and friction forces. This is also the case

for the attachment pads of living bodies, e.g., tree frogs and

geckos.

The theory presented above assumes that the attraction

between the solids is due only to the applied voltage. In real-

ity, there will always be other attractive interactions between

two contacting solids; e.g., the van der Waals interaction will

operate between all solids, and capillary bridges can be very

important in some cases, e.g., for the human skin. These addi-

tional interactions can also be included in the theory presented

above. Thus the role of capillary bridges on adhesion was stud-

ied in Ref. 19, and a more general theory of adhesion was

developed in Refs. 20 and 28.

In the theory presented above, we have also neglected

electrical breakdown across the narrow gap between the con-

tacting solids.29 When a large electric potential is applied

between narrowly separated surfaces, a very large electric field

can prevail, in particular, close to high and sharp asperities. If

the local electric field becomes larger than some critical value,

breakdown occurs. For gap separations typical in many appli-

cations (≈1 µm or less), the breakdown voltage is typically

a few hundred volts (see Fig. 7). This will affect the results

presented in Figs. 5 and 6 for large voltage.

In the study in Sec. II, we have assumed that the insulating

film has a constant effective thickness h0. In some applica-

tions, such as for grippers for robotics or for the finger in

the context of touch screen applications, the insulating layer

is made from an elastically very soft material. In this case,

the electrostatic adhesion will compress the insulating film in

the asperity contact regions, and the effective film thickness

h0 will therefore vary with the spatial coordinate (x, y) on the

same length scale as the (lateral variation) of the surface rough-

ness. This effect was not included in the treatment presented in

Sec. II, but qualitatively its effect is clear: In the asperity con-

tact regions, where the electrostatic adhesion is strongest, the

insulating film is squeezed between two surfaces and will get

(locally) thinner, which will increase the electrostatic attrac-

tion even more. Associated with this will also be an increased

local electric field which could increase the probability for

electric breakdown.
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FIG. 7. The breakdown voltage between two silicone surfaces (single gap)

as a function of the surface separation. The figure is based on experimental

data (see Ref. 29) obtained in the normal atmosphere. The results indicate an

avalanche breakdown process in large gaps (Paschen region), with a transition

region to small gaps in which vaporization due to the field emission current

appears to be the dominant breakdown process (see Ref. 29).

VII. SUMMARY AND CONCLUSION

I have developed a general mean-field theory for the

influence of electrostatic attraction on the contact mechanics

between two elastic solids with random surface roughness. I

have considered two cases, namely, with and without an elec-

trically insulating layer between the conducting solids. The

former case is important for, e.g., the finger–touch screen inter-

action. I have studied how the electrostatic attraction influences

the adhesion and friction. For the case of an insulating layer, I

found that when the applied nominal contact pressure is rela-

tively small, as the applied voltage increases, there is a sharp

increase in the contact area and hence in the friction at a critical

voltage. The effect results from a positive feedback mecha-

nism: increasing the electric voltage result in a larger electric

field in the gap between the solids. This pulls the solids in closer

contact (elastic deformations) which increases the electric field

further, and so on.
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