Home > Publications database > Contact mechanics for polydimethylsiloxane: from liquid to solid > print |
001 | 860479 | ||
005 | 20210130000524.0 | ||
024 | 7 | _ | |a 10.1039/C7SM02216F |2 doi |
024 | 7 | _ | |a 1744-683X |2 ISSN |
024 | 7 | _ | |a 1744-6848 |2 ISSN |
024 | 7 | _ | |a pmid:29345705 |2 pmid |
024 | 7 | _ | |a WOS:000425180700008 |2 WOS |
024 | 7 | _ | |a altmetric:31933247 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01233 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Dorogin, L. |0 P:(DE-Juel1)168534 |b 0 |
245 | _ | _ | |a Contact mechanics for polydimethylsiloxane: from liquid to solid |
260 | _ | _ | |a London |c 2018 |b Royal Soc. of Chemistry |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1549283962_11715 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Adhesion between a glass ball and a polydimethylsiloxane (PDMS) sample is dependent on the PDMS cross-link density, and the transformation of the material from the uncrosslinked liquid state to the fully crosslinked solid state is investigated in this study. The physical picture reflected a gradual transition from capillary forces driven contact mechanics to the classical Johnson–Kendall–Roberts (JKR)-type contact mechanics. PDMS was produced by mixing the base fluid and a cross-linker at a ratio of 10 : 1 and allowed to slowly cross-link at room temperature with simultaneous measurement of the ball–PDMS interaction force. The PDMS sample was in the liquid state during the first ≈16 hours, and in this case the ball–PDMS interaction was purely adhesive, i.e., no repulsive interaction was observed. Later at the PDMS gel-point the cross-linked PDMS clusters percolate, converting the fluid into a soft (fluid-filled) poroelastic solid. In the transition period, PDMS appears similar to pressure-sensitive adhesives. There we observe so-called “stringing” and permanent deformation of the material impacted by the ball. At room temperature, it takes more than ∼100 hours for PDMS to fully cross-link that can be confirmed by the comparison with the earlier-studied reference PDMS produced at elevated temperatures. |
536 | _ | _ | |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141) |0 G:(DE-HGF)POF3-141 |c POF3-141 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Persson, Bo |0 P:(DE-Juel1)130885 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1039/C7SM02216F |g Vol. 14, no. 7, p. 1142 - 1148 |0 PERI:(DE-600)2191476-X |n 7 |p 1142 - 1148 |t Soft matter |v 14 |y 2018 |x 1744-6848 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860479/files/c7sm02216f.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860479/files/c7sm02216f.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:860479 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130885 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-141 |2 G:(DE-HGF)POF3-100 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOFT MATTER : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|