000860483 001__ 860483
000860483 005__ 20240619091241.0
000860483 0247_ $$2doi$$a10.1021/acsnano.8b01396
000860483 0247_ $$2ISSN$$a1936-0851
000860483 0247_ $$2ISSN$$a1936-086X
000860483 0247_ $$2pmid$$apmid:30180539
000860483 0247_ $$2WOS$$aWOS:000445972400012
000860483 0247_ $$2altmetric$$aaltmetric:47684056
000860483 037__ $$aFZJ-2019-01237
000860483 082__ $$a540
000860483 1001_ $$0P:(DE-Juel1)164319$$aKreysing, Eva$$b0$$eCorresponding author
000860483 245__ $$aNanometer-Resolved Mapping of Cell–Substrate Distances of Contracting Cardiomyocytes Using Surface Plasmon Resonance Microscopy
000860483 260__ $$aWashington, DC$$bSoc.$$c2018
000860483 3367_ $$2DRIVER$$aarticle
000860483 3367_ $$2DataCite$$aOutput Types/Journal article
000860483 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549286185_11715
000860483 3367_ $$2BibTeX$$aARTICLE
000860483 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860483 3367_ $$00$$2EndNote$$aJournal Article
000860483 520__ $$aIt has been shown that quantitative measurements of the cell–substrate distance of steady cells are possible with scanning surface plasmon resonance microscopy setups in combination with an angle resolved analysis. However, the accuracy of the determined cell–substrate distances as well as the capabilities for the investigation of cell dynamics remained limited due to the assumption of a homogeneous refractive index of the cytosol. Strong spatial or temporal deviations between the local refractive index and the average value can result in errors in the calculated cell–substrate distance of around 100 nm, while the average accuracy was determined to 37 nm. Here, we present a combination of acquisition and analysis techniques that enables the measurement of the cell–substrate distance of contractile cells as well as the study of intracellular processes through changes in the refractive index at the diffraction limit. By decoupling the measurement of the cell–substrate distance and the refractive index of the cytoplasm, we could increase the accuracy of the distance measurement on average by a factor of 25 reaching 1.5 nm under ideal conditions. We show a temporal and spatial mapping of changes in the refractive index and the cell–substrate distance which strongly correlate with the action potentials and reconstruct the three-dimensional profile of the basal cell membrane and its dynamics, while we reached an actual measurement accuracy of 2.3 nm.
000860483 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000860483 588__ $$aDataset connected to CrossRef
000860483 7001_ $$0P:(DE-Juel1)165980$$aHassani, Hossein$$b1$$ufzj
000860483 7001_ $$0P:(DE-HGF)0$$aHampe, Nico$$b2
000860483 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b3$$eCorresponding author
000860483 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.8b01396$$gVol. 12, no. 9, p. 8934 - 8942$$n9$$p8934 - 8942$$tACS nano$$v12$$x1936-086X$$y2018
000860483 8564_ $$uhttps://juser.fz-juelich.de/record/860483/files/acsnano.8b01396.pdf$$yRestricted
000860483 8564_ $$uhttps://juser.fz-juelich.de/record/860483/files/acsnano.8b01396.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860483 909CO $$ooai:juser.fz-juelich.de:860483$$pVDB
000860483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164319$$aForschungszentrum Jülich$$b0$$kFZJ
000860483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165980$$aForschungszentrum Jülich$$b1$$kFZJ
000860483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ
000860483 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000860483 9141_ $$y2018
000860483 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2017
000860483 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860483 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860483 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860483 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860483 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860483 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860483 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860483 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860483 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2017
000860483 920__ $$lyes
000860483 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000860483 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000860483 980__ $$ajournal
000860483 980__ $$aVDB
000860483 980__ $$aI:(DE-Juel1)ICS-7-20110106
000860483 980__ $$aI:(DE-Juel1)ICS-8-20110106
000860483 980__ $$aUNRESTRICTED
000860483 981__ $$aI:(DE-Juel1)IBI-2-20200312
000860483 981__ $$aI:(DE-Juel1)IBI-3-20200312