000860484 001__ 860484
000860484 005__ 20210130000525.0
000860484 0247_ $$2doi$$a10.3762/bjnano.10.33
000860484 0247_ $$2Handle$$a2128/21542
000860484 0247_ $$2pmid$$apmid:30800573
000860484 0247_ $$2WOS$$aWOS:000458349800001
000860484 0247_ $$2altmetric$$aaltmetric:54932527
000860484 037__ $$aFZJ-2019-01238
000860484 041__ $$aEnglish
000860484 082__ $$a620
000860484 1001_ $$00000-0002-9229-0038$$aTewari, Sumit$$b0
000860484 245__ $$aIntuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain
000860484 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2019
000860484 3367_ $$2DRIVER$$aarticle
000860484 3367_ $$2DataCite$$aOutput Types/Journal article
000860484 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549289439_12298
000860484 3367_ $$2BibTeX$$aARTICLE
000860484 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860484 3367_ $$00$$2EndNote$$aJournal Article
000860484 520__ $$aA new way to control individual molecules and monoatomic chains is devised by preparing a human–machine augmented system inwhich the operator and the machine are connected by a real-time simulation. Here, a 3D motion control system is integrated with anultra-high vacuum (UHV) low-temperature scanning tunnelling microscope (STM). Moreover, we coupled a real-time moleculardynamics (MD) simulation to the motion control system that provides a continuous visual feedback to the operator during atomicmanipulation. This allows the operator to become a part of the experiment and to make any adaptable tip trajectory that could beuseful for atomic manipulation in three dimensions. The strength of this system is demonstrated by preparing and lifting a monoatomicchain of gold atoms from a Au(111) surface in a well-controlled manner. We have demonstrated the existence ofFabry–Pérot-type electronic oscillations in such a monoatomic chain of gold atoms and determined its phase, which was difficult toascertain previously. We also show here a new geometric procedure to infer the adatom positions and therefore information aboutthe substrate atoms, which are not easily visible on clean metallic surfaces such as gold. This method enables a new controlled atommanipulation technique, which we will refer to as point contact pushing (PCP) technique.
000860484 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860484 588__ $$aDataset connected to CrossRef
000860484 7001_ $$00000-0003-1645-2645$$aBakermans, Jacob$$b1
000860484 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b2
000860484 7001_ $$0P:(DE-HGF)0$$aGalli, Federica$$b3
000860484 7001_ $$00000-0003-0381-0132$$avan Ruitenbeek, Jan M$$b4$$eCorresponding author
000860484 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.10.33$$gVol. 10, p. 337 - 348$$p337 - 348$$tBeilstein journal of nanotechnology$$v10$$x2190-4286$$y2019
000860484 8564_ $$uhttps://juser.fz-juelich.de/record/860484/files/2190-4286-10-33.pdf$$yOpenAccess
000860484 8564_ $$uhttps://juser.fz-juelich.de/record/860484/files/2190-4286-10-33.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860484 909CO $$ooai:juser.fz-juelich.de:860484$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b2$$kFZJ
000860484 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860484 9141_ $$y2019
000860484 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860484 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000860484 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2017
000860484 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000860484 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000860484 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860484 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860484 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860484 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860484 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000860484 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860484 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860484 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000860484 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860484 920__ $$lyes
000860484 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000860484 980__ $$ajournal
000860484 980__ $$aVDB
000860484 980__ $$aUNRESTRICTED
000860484 980__ $$aI:(DE-Juel1)PGI-3-20110106
000860484 9801_ $$aFullTexts