000860511 001__ 860511
000860511 005__ 20240708132652.0
000860511 0247_ $$2doi$$a10.1016/j.engfracmech.2018.09.016
000860511 0247_ $$2ISSN$$a0013-7944
000860511 0247_ $$2ISSN$$a1873-7315
000860511 0247_ $$2WOS$$aWOS:000449274300032
000860511 037__ $$aFZJ-2019-01247
000860511 082__ $$a530
000860511 1001_ $$0P:(DE-Juel1)174490$$aQu, D.$$b0$$eCorresponding author
000860511 245__ $$aDetermination of interface toughness of functionally graded tungsten/EUROFER multilayer at 550 °C by analytical and experimental methods
000860511 260__ $$aKidlington$$bElsevier Science$$c2018
000860511 3367_ $$2DRIVER$$aarticle
000860511 3367_ $$2DataCite$$aOutput Types/Journal article
000860511 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549379500_11543
000860511 3367_ $$2BibTeX$$aARTICLE
000860511 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860511 3367_ $$00$$2EndNote$$aJournal Article
000860511 520__ $$aAs armor coating, functionally graded (FG) tungsten/EUROFER multilayer was sprayed on EUROFER substrate for First Wall application in fusion field. Interface toughness between FG tungsten/EUROFER multilayer and EUROFER substrate was studied innovatively by a simple method based on the beam theory in this paper. To quantify interface toughness, the energy release rate was assessed by performing three and four-point bending tests on pre-cracked specimens at 550 °C and under high vacuum. The energy release rate during propagating of interfacial crack was determined to be 258 J/m2 and 225 J/m2 analytically and experimentally for samples with 3 and 5 layers as FG-layer, respectively, which were calculated based on multi bending tests. Cross-section and fracture microstructure show a vast of plasticity in FG-layer, particularly in FG-layer with a higher volume ratio of EUROFER. Interfacial fracture microstructure indicates interface adhesion consists of mechanical interlocking and metallurgical bonding.
000860511 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000860511 588__ $$aDataset connected to CrossRef
000860511 7001_ $$0P:(DE-HGF)0$$aGaganidze, E.$$b1
000860511 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b2$$ufzj
000860511 7001_ $$0P:(DE-HGF)0$$aAktaa, J.$$b3
000860511 773__ $$0PERI:(DE-600)2012718-2$$a10.1016/j.engfracmech.2018.09.016$$gVol. 202, p. 487 - 499$$p487 - 499$$tEngineering fracture mechanics$$v202$$x0013-7944$$y2018
000860511 909CO $$ooai:juser.fz-juelich.de:860511$$pVDB
000860511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000860511 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000860511 9141_ $$y2019
000860511 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENG FRACT MECH : 2017
000860511 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860511 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860511 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860511 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860511 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860511 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860511 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860511 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860511 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860511 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860511 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860511 980__ $$ajournal
000860511 980__ $$aVDB
000860511 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860511 980__ $$aUNRESTRICTED
000860511 981__ $$aI:(DE-Juel1)IMD-2-20101013