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Abstract— This work discusses classic feedback control (PD) 

and Iterative Learning Control (ILC) applied to a Lorentz force 

based actuator system for turbulence research. The goal is 

precise and reliable generation of transversal waves on an 

aluminum surface in wind tunnel experiments. For research on 

unsteady inflow conditions wave parameters have to be 

adjustable quickly within given ranges (50 to 135 Hz frequency, 

260 to 500 µm amplitude, 80 to 160 mm wavelength). We present 

results of simultaneous control of individual actuators as well as 

decoupling steering. Using Finite Element simulations the 

observed unwanted tilting oscillations could be explained. 

I. INTRODUCTION 

Turbulent drag is an important economic and ecological 
issue throughout most of modern transportation. The research 
group FOR 1779, funded by the DFG (German research 
foundation) [1], studies active drag reduction via wavy surface 
oscillations. The participating researchers perform numerical 
simulations [2] as well as wind tunnel experiments [3] to 
develop robust methods for the reduction of turbulent friction 
drag. 

In wind tunnel experiments at low Reynolds numbers a 
traveling transversal aluminum surface wave shall be enabled 
with parameter ranges as shown in Table 1. For this, we 
developed a Lorentz force actuator system. Each of the up to 
20 actuators is realized as a linear electric motor with one coil 
(see fig. 1). The parallel arranged actuators are glued to the 
surface in an equidistant spacing. Hence to produce a traveling 
wave they need to move on sine trajectories with evenly 
increasing phase shift. We control this movement via the 
voltage applied to the coils. 

Research on unsteady inflow conditions requires the ability 
to quickly and reliably react to the new condition by changing 
the parameters of the surface wave. We focus on facilitating 
such transitions and stabilizing our most recent actuator 
system, while other researchers within FOR 1779 focus on 
flow control (e.g. [4]). We will discuss control methods for our 
current 20 actuator, 10 mm spacing system in the following. 

The second section will describe the plant and its special 
properties in more detail. The following section, section three, 
describes results obtained using classic control implemented 
on a test system. The fourth section introduces the idea of 
improving over PD using an Iterative Learning Control (ILC), 
which has been studied in simulation, and deals with 
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implementation of ILC. The following, fifth section addresses 
the issue of decoupling, which is essential to further improve 
control. Tilting of the actuators is one of the main obstacles to 
be overcome in order to achieve the desired control and is 
discussed in the sixth section. The work closes with an outlook 
to our future research on control. 

II. PLANT DYNAMICS AND MODEL 

The actuators are coupled via the 0.3 mm aluminum 
surface. Within the desired range of wavelength and amplitude 
this coupling requires the application of a control system to 
ensure accurate and reliable waves. 

Strong beating oscillations and uneven amplitude 
distribution along the direction of propagation of the wave 
would disturb wind-tunnel measurements to an unacceptable 
level. Therefore feedback and feed-forward control techniques 
are under development to overcome these problems. In 
addition we pursue the goal of quickly and smoothly changing 
important wave parameters such as amplitude, wavelength and 
frequency (Table 1). 

TABLE I.  WAVE PARAMETER RANGES 

Wave 

parameter 

Frequency in 

Hz 

Amplitude in 

µm 

Wavelength in 

mm 

Target 

range 

50–135  260–500 80–160 

 

As shown in fig. 1 we use two types of sensors to detect 
the position of each actuator bar and from this we determine 
the shape of the wave, which is the controlled variable. The 
laser triangulation sensors cannot be used during wind tunnel 
experiments as they would disturb the airflow. We use them to 
calibrate analog light barrier sensors, which are capable of 
detecting the position of the actuator bar with high accuracy 
(in the range of 10 µm) and bandwidth (> 1 kHz, further detail 
in section VI and [12]).  

A model capturing the main dynamics of the system is 
based on the actuators behaving like coupled linear harmonic 
oscillators. The differential equations describing the system 
also contain its electromagnetic dynamics (inductivity, back 
electromotive force). We find the force equilibrium: 
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Figure 1.    Cross sections of the actuator system. 
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Here �� denotes the position of the ith actuator bar, 
� its 
mass, �� its friction coefficient, � the spring constants between 
actuators denoted by the indices, � length of the conductor in 
the magnetic flux � for a coil with � turns, inductivity #, 
resistance   and input voltage ", which is the manipulated 
variable. However measurements show that electromagnetic 
dynamics have no significant impact at our operating 
frequencies so approximately	���	�
�� ∝ ". 

Of course there are some limitations to this model. As 
elongation increases reset force becomes significantly non-
linear. Based on our measurements this is not a significant 
issue within our current wave parameters and surface 
thickness.  Non-linear friction might also severely limit the 
linear model but has not been studied in detail so far. 

The key disturbances include: above mentioned non-
linearity, forces due to unpredictable actuator movement 
imposed by the moving surface or asymmetries due to 
manufacturing margins which may directly impact up-down 
movement or lead to varying friction. As a preliminary 
measure we also treat coupling of the actuators as disturbance 
and use single input single output controllers starting with 
proportional-differential (PD) control. 

III. CLASSIC CONTROL 

As a first approach PD control was used on a testbed 
system having 3 actuators at the same 10 mm spacing as the 
target system [7]. Its success lies primarily in showing that 
feedback control works on the system in principle. However, 
it can only produce a limited phase difference of 
approximately 15° between the actuators, resulting in a 
minimum wavelength of 240 mm. 

Integral action is not used as it is not necessary while 
impacting stability adversely. The steady state (zero) position 
of the actuators is mostly fixed by the close boundaries in this 
test system and does not require adjustment. 

The 3 actuator system is strongly influenced by boundary 
effects. The boundary actuators are most closely coupled to 
their only moving next neighbor. Therefore they tend to 
oscillate in phase with that neighbor. The coupling of a freely 
moving actuator between two phase shifted neighbors to the 
neighbors is roughly equal. This leads to its phase shift also 
lying roughly in the middle between the neighbors. Additional 
issues (discussed in section V) also hinder the use of pure PD 
control further away from boundaries. 

IV. ITERATIVE LEARNING CONTROL 

A. Suitability of Iterative Learning Control 

To overcome the PD control limitations concerning 
maximum phase shift we applied Iterative Learning Control 
(ILC) which is an attractive approach for periodic references 
and plants with inherently periodic disturbances (e.g. [5]). The 
key disturbances (as described in sec. II) in our application are 

dependent on the collective position and dynamical state of the 
actuators which is highly periodic in the fully settled traveling 
wave (fixed frequency, wavelength traveling wave). These 
sources might also produce transient disturbances when 
transitioning to another set of wave parameters. However, 
these transitions are expected to occur with sufficient time 
spacing to accommodate ILC convergence to the new 
parameter set. In addition this problem can be alleviated by 
smoothing the transition [6]. Other transient disturbances act 
slowly (gravity, temperature changes) and are therefore not as 
relevant.  

B. General Scheme for Implementation 

Previously we developed a gain switching PD-Type ILC, 
which showed promising results in simulation study based on 
the geometric parameters of our 10 actuator system with 20 
mm actuator spacing [8]. 

For implementation we altered the control scheme slightly 
to a so called Repetitive Control configuration. Within a more 
general mathematical framework it can be shown that Iterative 
Learning Control and Repetitive Control (RC) are the same 
[9]. 

C. Model based learning 

To reduce convergence time we furthermore use model 
based ILC. Of course we have to assume some model 
mismatch especially as we do not take coupling into account 
at first. In practice it is therefore necessary to add a low pass 
iteration filter S for stability [10] [11] (see fig. 2). It suppresses 
feedback at frequencies where model mismatch would lead to 
instability. 

The learning filter	Γ is based on aforementioned linear 
model of the actuator. Not all parameters are well known or 
easy to measure independently. Therefore we generate a grey 
box state space model from the differential equations (1) to (3). 
Using the Matlab System Identification Toolbox we fit the 
unknown model parameters. We now denote the true plant 

with ) and the model with )*. To find a good learning filter we 
follow the internal model principle and use the inverted model 

 

Figure 2.    ILC with underlying classic feedback control (in dotted frame) 

block diagram based on [11]. The Plant is P,  Γ is the learning filter, S is a 

steering filter, R filters the reference and is usually chosen R = Γ (nominal-

actual comparison). C is the classic feedback loop filter, a PD with filtered 

differential part in our case. 



  

as base, which is modified with a low pass filter S (same as the 
iteration filter) leading to the learning Filter Γ.  

This avoids excessive amplification of high frequency 
sensor noise. In addition robustness can be increased by 
carefully reducing the absolute value of the learning gain, 
multiplying with a factor + < 1 [13], which comes at the price 
of slower convergence towards the reference waveform. We 
therefore have the learning filter:  

Γ � + ⋅ )*�� ⋅ . (4) 

 
This parameter and the corner frequency of the digital low 

pass filter used for the steering filter and as part for the 
synthesis of the learning filter have been extensively tuned for 
best results. 

D. Zero Phase Filtering 

Based on similar approaches in related applications [10], 
we implemented the learning filter as a zero-phase (hence non-
causal) filter. This is done by manipulating the delay which 

lies at the heart of the ILC (/��
�0� in fig. 2). The learning 
filter and the steering filter S are designed as 2 ⋅ 2 tap 
symmetric Finite Impulse Response (FIR) filters with linear 
phase and constant group delay. Reducing the delay by k 
samples exactly compensates for the phase of the filters. They 
then appear as zero phase filters cascaded with an n sample 
delay. This delay, the ILC period, needs to be changed with 
the adjustable actuation frequency to match the actuation 
period. Therefore the largest possible k equals f56789:/
f<��=<���
,><? , with �@<>AB� � 10 kSps and f<��=<���
,><?  the 

largest possible actuation frequency. For the implementation 
shown here k � 50 is chosen, which allows for a maximum 
actuation frequency of 200 Hz. 

E. Experimental Results 

Combining these methods results in stable control at 
frequencies up to 20 Hz. To improve transient response and 
suppression of non-periodic disturbances the ILC is combined 
with classical PD feedback control. This can be done in series 
or in parallel. Since the serial approach usually is chosen only 
in combination with a preexisting, working feedback control, 
we choose the parallel configuration shown in fig. 2 (derived 
from [11]). 

As shown in fig. 3, convergence is fast (approx. 0.4 s) and 
phase error after convergence (fig. 4) is minimal, although this 
test was done on the 3 actuator setup, which has proven to be 
difficult in this regard (see above). Also overall error is 
sufficiently small (< 5 %). 

V. COMBINING ITERATIVE LEARNING CONTROL WITH 

DECOUPLING 

To achieve stable control in the desired frequency range 
(see Table 1) we combine ILC with decoupling. Similar to the 
learning filter decoupling is derived from a model. The 
simplest way to do this is to use the model inverse (if it exists 
like in our case) for feedforward. For this purpose our previous 
model was too inaccurate. To avoid the complex task of 
modeling and inverting a system with potentially multiple 
resonances in the frequency range of interest, the model for 
decoupling only takes one frequency into account. In 
successive experiments the actuators are each excited with a 
100 Hz sine voltage individually and the response of all 
actuators is measured. Using Hilbert transform to determine 
instantaneous phase and amplitude of the responses and 
averaging over multiple periods, gain and phase of each 
actuator with respect to the input signal are determined. 
Entering these results as complex valued coefficients in a 
20x20 matrix yields a system description for the specific 
frequency. Assuming a linear time invariant system, the 
inverse of this matrix should then decouple the system at the 
specific frequency. As an example results for actuator 7 are 
shown in fig. 5 and 6. 

Although the measurements indicate decoupling is not 
perfect, it severely reduces the impact of coupling as a 
disturbance, which a SISO ILC has to overcome. This should 
improve the convergence time of the ILC which is a major goal 
of our research. However, the central question remains, if this 
extends stable operation to the desired frequency range. This 
is subject of ongoing research.  

Large phase delay close to 180° is measured from voltage 
input to position sensor output for many frequencies between 
27 Hz and 135 Hz. This could render classic feedback useless 
for the 20 actuator setup. Fortunately ILC can deal with such 
a situation if model mismatch is sufficiently small. 

Figure 3.    Convergence of ILC with underlying PD after switching on. Figure 4.    Converged tracking by ILC with underlying PD. 



  

Progress towards decoupling was achieved by 
investigating tilting oscillations of the actuator system which 
will be described in the following section.  

VI. FINITE ELEMENT SIMULATION OF ACTUATOR TILTING 

Loss of stability above 20 Hz and difficulties obtaining an 
accurate model for decoupling and ILC are closely related to 
tilting oscillations that can be observed with two reference 
sensors measuring one actuator. To understand mechanisms 
behind tilting oscillations, Finite Element (FE) simulations of 
the mechanical setup have been performed. The simulations 
identified actuator tilting as an effect of eigenmodes shown in 
fig. 7 and 8 which are comparable tilting and non- tilting 
modes. The associated eigenfrequencies are very close to each 
other. Therefore disturbances from uneven forces acting on the 
actuators due to uneven spring force (inhomogeneity of 
surface material, limited manufacturing precision) and 
dynamic variations of load on the bearings, and accordingly 
varying friction force, tilting oscillations are easily excited. 

This has led to inconsistent sensor readings used for 
feedback. These sensors are also the only available method for 
fully capturing the system response. Therefore during system 
identification errors have been introduced which lead to large 
model mismatch and in turn to stability problems. As a first 
approach we redesigned the sensors [12]. The new sensor 
configuration is capable of measuring the center of mass 
movement of the actuators and their tilting motion reliably. 

Unfortunately, the tilting oscillations cannot be actively 
counteracted in the current setup. Upgrading the setup with 
additional coils and amplifiers is an option but would increase 
the complexity of the control significantly. We also performed 
FE simulations on the placement of additional bearings. This 
shifts the eigenfrequency of the tilting oscillations to such high 
frequencies (>900 Hz) that it should not interfere with 
actuation at our target frequencies anymore. Experiments on 
additional bearings are in progress.  

Figure 4.    Pseudocolor picture of actuator movement when only actuator 

7 is excited with a 100 Hz sine signal. 
Figure 5.    Pseudocolor picture of actuator movement with inversion 

decoupling on all actuators. Ideally only actuator 7 should move. 

Figure 7.    FE simulation of non-tilting standing wave oscillation. 

Pseudocolor indicates displacement in arbitrary units. 
Figure 6.    FE simulation of tilting standing wave oscillation. Pseudocolor 

indicates displacement in arbitrary units. 



  

VII. CONCLUSION 

We have described various approaches to control a system 

of strongly mechanically coupled actuators to produce a 

stable traveling wave. The implementation of classic PD 

control shows that feedback control is possible in principle 

but is limited to large wave lengths. Theoretical results show 

that gain-switching PD-type ILC is a capable tool for dealing 

with the given problem based on its inherent periodicity (in 

time). Implementation of loosely model based ILC with 

underlying PD using zero phase filtering achieves marked 

improvements over PD control on its own as expected. It also 

improves over the convergence time of gain switched ILC.  

The desire to achieve higher frequencies embracing the model 

based approach leads into decoupling control. This step-wise 

improvement makes us confident that our present research 

together with improvements to the hardware to suppress 

tilting oscillations that hinder control will finally yield a 

method to achieve stable traveling waves in the desired 

parameter range with sufficient flexibility. 
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