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Topological invariants of band insulators derived from the local-orbital based embedding potential
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We demonstrate that topological invariants of band insulators can be derived efficiently from the eigenvalues

of the local-orbital (LO) based embedding potential, called also the contact (lead) self-energy. The LO based

embedding potential is a bulk quantity. Given the tight-binding Hamiltonian describing the bulk valence and

conduction bands, it is constructed straightforwardly from the bulk wave functions satisfying the generalized

Bloch condition. When the one-electron energy ε is located within a projected bulk band gap at a given planar

wave vector k, the embedding potential becomes Hermitian. Its real eigenvalues exhibit distinctly different

behavior depending on the topological properties of the valence bands, thus enabling unambiguous identification

of bulk topological invariants. We consider the Bernevig-Hughes-Zhang model as an example of a time-reversal

invariant topological insulator and tin telluride (SnTe) crystallized in a rock-salt structure as an example of a

topological crystalline insulator.
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I. INTRODUCTION

Over the past decade a vast amount of work has been
devoted to exploring novel topological phases of condensed
matter [1–4]. The rapid progress in this field began with
the pioneering work on two-dimensional (2D) topological
insulators (TIs) protected by time-reversal symmetry [5,6].
Their valence band structure is characterized by a nonzero
Z2 topological invariant ν = 1 [7,8]. HgTe quantum wells
and Bi bilayers are well-known examples of 2D TIs [9–12].
The concept of time-reversal invariant TIs was soon extended
to three-dimensional (3D) systems whose band structure can
be divided according to a set of Z2 topological invariants
(ν0; ν1,ν2,ν3) [13–19]. In 2011 Fu proposed another phase of
condensed matter called topological crystalline insulator (TCI)
whose topological property is protected by crystal point-group
symmetries [20]. SnTe in the rock-salt structure is the first
material that was proved to be a 3D TCI with a nonzero mirror
Chern number [21–24]. In addition, several 2D materials with
a mirror reflection plane were theoretically predicted to be
TCIs [25–28].

Both time-reversal invariant TIs and TCIs exhibit robust

edge (surface) modes crossing the bulk band gap. The

emergence of such surface bands is ensured by the bulk-edge

correspondence [29,30]. Moreover, considering the fact that

the surface-state wave function is a superposition of evanescent

waves satisfying a particular boundary condition at the surface

and further that the evanescent waves are solutions of the

bulk Schrödinger equation satisfying the generalized Bloch

condition with a complex wave number, it is not surprising that

the emergence of surface modes is ruled by bulk topological

invariants. The energy bands of a bulk crystal extended to

complex wave numbers comprise the complex band structure.

Recently, the complex band structure of TIs has been studied

with the aim of exploring the properties of the surface modes

in the bulk band gap [31,32]. Unfortunately, one cannot derive

bulk topological invariants from the complex wave number

vs energy plot of the complex bands, in the same way as

one cannot find topological invariants just by plotting the

energy dispersion of Bloch states with real wave number in

the Brillouin zone (BZ).

In order to derive bulk topological invariants, one needs

to compute the properties of electron wave functions. For a

bulk crystal with a space-inversion center, the Z2 topological

invariant can easily be computed by considering the parity

eigenvalues of the occupied valence bands at time-reversal

invariant momentum (TRIM) points [33]. The evaluation of the

Z2 invariant for a noncentrosymmetric system is more difficult

since one needs to integrate the Berry connection over half the

2D BZ where the the gauge of the wave functions must be

chosen appropriately [34]. Alternatively, one can determine

topological invariants by following the flow of the Wannier

charge centers (WCCs) of the valence bands along a path

connecting two symmetry points in the BZ [35–38]. Also,

topological invariants can be deduced from the flow of the

edge modes appearing in the entanglement spectrum when the

system is spatially partitioned into two parts by a cut plane

[39,40].

In a recent work [41], two of the present authors showed

that the Z2 topological invariant of band insulators can be

derived from the real eigenvalues of the embedding potential

of Inglesfield [42,43] in a projected bulk band gap. It is a bulk

quantity that can be computed from the wave functions of the

generalized Bloch states. However, its numerical computation

is rather involved since one needs a real-space formalism that

enables an accurate description of one-electron wave functions

on a boundary surface between two atomic layers [44–46].

In the present paper we demonstrate that, alternatively,

topological invariants of band insulators can be derived from

the eigenvalues of the embedding potential formulated with

localized basis functions [called local orbitals (LOs) hereafter].

The advantage of the present formulation is that the LO

based embedding potential can readily be calculated, once

one has a tight-binding Hamiltonian describing the valence

and conduction bands of a bulk crystal. One can adopt

either simple model Hamiltonians or first-principles ones

expanded in terms of atomic-orbitals-like basis functions or

the maximally localized Wannier functions [47]. The LO

based embedding potential which is also called “contact

(lead) self-energy” is widely used for calculating the electron

transport through nanostructures sandwiched between two
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leads [48–50]. Several efficient methods have been developed

to calculate this quantity for large systems [51–53].

Given a crystal orientation, the embedding potential is a

function of the planar wave vector k and the one-electron

energy ε. As will be shown, the embedding potential becomes

Hermitian when ε lies within a projected bulk band gap. Its real

eigenvalues exhibit distinctively different behavior depending

on the topological property of the valence bands, when they

are plotted along a k-space path linking two symmetry points

in the surface BZ. This behavior permits an unambiguous

determination of the topological invariants. In addition to

the Z2 invariant of time-reversal invariant TIs discussed in

our previous work [41], we demonstrate here that the present

method can also be applied for determining the mirror Chern

number of TCIs.

The plan of the present paper is as follows. Section II

provides various theoretical aspects. We begin with explaining

how to construct the LO based embedding potential from

the generalized Bloch states and discuss the properties of its

eigenvalues within a projected bulk band gap. We present the

relationship between the embedding potential and the surface

Green’s function and discuss the effects of time-reversal

symmetry and the evaluation of topological invariants. In

Secs. III and IV results are presented for the 2D TI represented

by the Bernevig-Hughes-Zhang (BHZ) model [9] and for a 3D

TCI, SnTe, respectively. The summary and the comparison

with other methods for determining topological invariants are

provided in Sec. V. In the Appendix, we present a calculation

of an interface between two BHZ-model systems in order to

illustrate the advantage of using the LO embedding potential

in studying the interface between two topological materials.

Unless otherwise stated, we use Hartree atomic units with

me = e = h̄ = 1 throughout the paper.

II. THEORY

A. Localized basis set

We consider either a 2D or a 3D bulk crystal having periodic

one-electron potential. Given an arbitrary crystal orientation,

the system can be regarded as an infinite pileup of lattice planes

stacked perpendicularly to the crystal orientation. We choose

the z axis as the surface normal, whereas x = (x,y) are 2D

spatial coordinates within the plane. In the present paper, a set

of lattice planes incorporating all atoms in a bulk unit cell is

called “layer”. We denote 2D lattice vectors within the plane by

R‖, while the lattice vector connecting two unit cells belonging

to two nearest-neighbor layers is denoted by d = (d‖,dz), with

dz (>0) giving the thickness of a single layer.

We calculate eigenstates of the one-electron Hamiltonian

of the system for a given planar wave vector k and a given

energy ε. In doing so, we consider not only Bloch states

propagating in the z direction but also evanescent waves that

decay toward either z = +∞ or −∞. To expand solutions of

the Schrödinger equation, we use basis functions specified by

k, layer index l, and orbital index n,

〈

rσ
∣

∣χk
ln

〉

=
1

√
M

∑

R‖

eik·(xln+R‖)fn(r − rln − R‖,σ ), (1)

where r = (x,z), σ is the spin index, M is the number of lattice

points in the plane, and fn(r,σ ) (n = 1,2, . . . ,N) denotes

spatially localized two-component spinor basis functions. In

Eq. (1), rln = (xln,zln) specifying the center of the nth basis

function in layer l is related to the corresponding one in layer

0, rl=0n, by rln = rl=0,n + ld.

We assume that the basis set {χk
ln} is orthonormal, although

the generalization to the case of a nonorthogonal basis set can

easily be made by introducing overlap matrices between basis

functions [43,53]. Let us expand |φ〉, an arbitrary solution of

the Schrödinger equation with k and ε, by using {χk
ln} as

|φ〉 =
∑

l,n

∣

∣χk
ln

〉〈

χk
ln

∣

∣φ
〉

. (2)

〈χk
ln|φ〉 satisfies

Ĥ k
l,l+1 φ̃(l + 1) + Ĥ k

l,l φ̃(l) + Ĥ k
l,l−1 φ̃(l − 1) = ε φ̃(l), (3)

where Ĥ k
l,l′ is an N × N hopping matrix whose (n,n′) element

is given by 〈χk
ln|Ĥ |χk

l′n′〉 with Ĥ being the one-electron

Hamiltonian, and φ̃(l) denotes a column vector of length N ,

φ̃(l) =
(〈

χk
l1

∣

∣φ
〉

,
〈

χk
l2

∣

∣φ
〉

, . . . ,
〈

χk
lN

∣

∣φ
〉)t

.

In Eq. (3) we have assumed that Ĥ k
l,l′ is nonvanishing only up

to nearest-neighbor layer interactions. If this is not the case,

for example, if Ĥ k
l,l+2 is not negligible, one should double the

layer thickness by treating two successive layers as “single

layer”. In the periodic bulk system, Ĥ k
l,l+1, Ĥ k

l,l , and Ĥ k
l,l−1 do

not depend on layer index l. Hereafter, we will use symbols,

Ĥk
01, Ĥk

00, and Ĥk
10 to denote the bulk Hamiltonian matrices.

B. Complex band structure

For given k and ε, we calculate wave functions satisfying

the generalized Bloch condition,

φ̃(l + 1) = µ φ̃(l), (4)

with

µ = exp(iqzdz), (5)

where qz = kz + iκz is a complex wave number. Bloch waves

correspond to wave functions with κz = 0, while those with

positive (negative) κz are evanescent waves decaying toward

l = +∞ (−∞). Plotting complex wave number qz as functions

of k and ε is known as the complex band structure of a bulk

crystal.

To obtain generalized Bloch states satisfying Eq. (4), we

introduce a 2N × 2N transfer matrix T̂ , connecting wave

functions on successive layers by
(

φ̃(l + 1)

φ̃(l)

)

= T̂

(

φ̃(l)

φ̃(l − 1)

)

. (6)

From Eq. (3), one sees that T̂ is given by [14,51]

T̂ =

(

(

Ĥk
01

)−1[

εÎ − Ĥk
00

]

−
(

Ĥk
01

)−1
Ĥk

10

Î Ô

)

, (7)

where Î and Ô are N -dimensional identity and zero matrices,

respectively. From Eqs. (4) and (6), we see that the generalized

Bloch states satisfy the eigenvalue equation of the transfer
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matrix. We denote the ith eigenvalue of T̂ by µi and the

corresponding eigenvector [only the upper half, i.e, the column

vector of length N corresponding to φ̃(l)] by ũi with i ranging

from 1 to 2N . Generalized Bloch states can be divided into two

groups depending on their asymptotic behavior. Those with

index i = 1,2, . . . ,N are understood to fulfill the outgoing

boundary condition at l = +∞, i.e, they either decay or

propagate toward l = +∞ (|µi | � 1), whereas those with

i = N + 1, . . . ,2N are understood to satisfy the outgoing

boundary condition at l = −∞, i.e, they propagate or decay

toward l = −∞ (|µi | � 1).

C. Local-orbital based embedding potential

The embedding theory of Inglesfield [42] is based on the

real-space representation of one-electron wave functions. For

a semi-infinite crystal with boundary surface S, its central

quantity “embedding potential” relates the value and normal

derivative on S of an arbitrary electron wave function ψ(ξ )

with k and ǫ, which either propagates or decays toward the

interior of the semi-infinite crystal, by

2

∫

S

�(k,ǫ,ξ,ξ ′)ψ(ξ ′)dξ ′ = ∂nψ(ξ ), (8)

with a composite index ξ = (x,σ ). In the present paper we

define the embedding potential for LOs such that it bears a

close similarity to Eq. (8).

We divide the whole crystal into the semi-infinite one on

the left-hand side (l � l0) and that on the right-hand side (l �

l0 + 1) and define the embedding potential that describes the

effects of the right-hand-side semi-infinite crystal (l � l0 + 1)

on the boundary layer l0. Let |ψ〉 be an arbitrary wave function

with the parallel wave vector k and energy ε that satisfies the

outgoing boundary condition at l = +∞. We denote the value

of |ψ〉 on layer l by

ψ̃(l) =
(〈

χk
l1

∣

∣ψ
〉

,
〈

χk
l2

∣

∣ψ
〉

, . . . ,
〈

χk
lN

∣

∣ψ
〉)t

.

We define the embedding potential �̂(k,ε) by an N × N

matrix that relates ψ̃(l0) and ψ̃(l0 + 1) via

�̂(k,ε) ψ̃(l0) = Ĥk
01 ψ̃(l0 + 1). (9)

As is seen, the normal derivative of the wave function in

Eq. (8) is replaced by Ĥk
01ψ̃(l0 + 1) on the right-hand side

of Eq. (9). Since �̂(k,ε) has the same dimension as Ĥ01, it is

appropriate to call this quantity a nonlocal “potential”. Because

generalized Bloch states ũi with i = 1,2, . . . ,N defined in the

preceding section satisfy the outgoing boundary condition at

l = +∞, all of them should fulfill the equation

�̂(k,ε)ũi = Ĥk
01 µi ũi .

Thus, by introducing an N × N matrix made out of N

eigenvectors, V̂ = (ũ1,ũ2, . . . ,ũN ), and a diagonal matrix M̂

with elements M̂ij = δijµi , we have

�̂(k,ε) V̂ = Ĥk
01 V̂ M̂. (10)

Hence, we obtain

�̂(k,ε) = Ĥk
01 V̂ M̂ V̂ −1, (11)

indicating that the embedding potential �̂ is a purely bulk

quantity determined by the generalized Bloch states of a bulk

crystal. Since �̂ does not depend on the choice of the boundary

layer l0, we choose l0 = 0 for simplicity in the following.

Here we consider the current carried by an arbitrary wave

function with k and ε, |ψ〉, that satisfies the outgoing boundary

condition at l = +∞. The current from layer 0 through layer 1

can be evaluated from the values of the wave function as

J = 2 Im
[

ψ̃†(1)Ĥk
10 ψ̃(0)

]

= 2 Im
[

{

Ĥk
01 ψ̃(1)

}†
ψ̃(0)

]

=
1

i
ψ̃†(0)[�̂†(k,ε) − �̂(k,ε)]ψ̃(0), (12)

where we used Ĥk
10 = (Ĥk

01)†. This equation bears a close

similarity to the current expression in the embedding theory

of Inglesfield [see, for example, Eq. (8) in Ref. [41]]. As

discussed in Ref. [41], Eq. (12) has an important consequence:

If ε is located in a projected bulk band gap at a given k,

i.e, if all generalized Bloch states are evanescent waves, J

must vanish regardless of the value of ψ̃(0). This signifies

that within a projected bulk band gap, the embedding potential

�̂ is Hermitian, namely, �̂ = �̂†. In this case, all eigenvalues

of the embedding potential are real.

D. Relationship to surface Green’s function

Let us divide the whole crystal into two semi-infinite pieces

on the left- and right-hand sides by switching off the coupling

term between layers 0 and 1, Ĥk
01. We will show that the LO

based embedding potential defined by Eq. (9) is identical with

so-called contact (lead) self-energy [48–53] defined in terms

of the surface Green’s function of the semi-infinite crystal

occupying the right half-space (l � 1) and decoupled from

that on the left-hand side (l � 0). The semi-infinite crystal

on the right-hand side (l � 1) will be called “bulk truncated

surface” hereafter.

Let |ψ〉 be an arbitrary bulk solution of the Schrödinger

equation with parallel wave k and ε that satisfies the outgoing

boundary condition at l = +∞ (|ψ〉 is defined for −∞ < l <

+∞). If l � 1, Eq. (3) can be rewritten as
∑

l′�1

[

ε δl,l′ Î − Ĥk
l,l′

]

ψ̃(l′) = δl,1Ĥ
k
10 ψ̃(0). (13)

We see that the matrix in the square bracket on the left-hand

side of Eq. (13) is the inverse of the Green’s function of the

bulk truncated surface, Ĝ(k,ε). Thus, by operating Ĝ(k,ε) on

both sides of Eq. (13) from the left, we obtain

ψ̃(l) = Ĝl,1(k,ε)Ĥk
10 ψ̃(0), (14)

where Ĝl,l′ denotes an N × N Green’s function matrix whose

(n,n′) element is given by 〈χk
ln|Ĝ|χk

l′n′〉. This equation is

essentially the same as Eq. (6.7) in the book of Inglesfield

[43] except that he considered a more general nonorthogonal

LO basis set. By choosing l = 1, we have

ψ̃(1) = Ĝ11(k,ε)Ĥk
10 ψ̃(0). (15)

By comparing Eqs. (9) and (15) and noting that both hold

for an arbitrary solution |ψ〉 satisfying the outgoing boundary
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condition at l = +∞, we have

�̂(k,ε) = Ĥk
01Ĝ11(k,ε)Ĥk

10. (16)

In previous theories of the electron transport through an

interface between two metal leads, the whole system was

divided into the interface region and the two unperturbed

semi-infinite leads on both sides [48–50]. By projecting the

Green’s function equation for the whole system to that for a

smaller Hilbert space spanned by the basis set of the interface

region, one can easily show that the effects of the semi-infinite

lead on the right-hand side (l � 1) can be expressed by the

self-energy term Eq. (16) acting on the boundary layer of

the interface region, l = 0. Several authors developed efficient

methods to express the Green’s function of the semi-infinite

lead [51–54], and thus, the contact self-energy. The present

formulation provides an alternative viewpoint concerning the

physical meaning of the LO based embedding potential. In

particular, by starting with Eq. (9) rather than with Eq. (16),

the present definition reveals a close similarity of the LO based

embedding potential to that of Inglesfield [42].

E. Embedding-potential eigenvalues

In the following, we consider the embedding potential of

a band insulator for energies within a projected bulk band

gap εv(k) < ε < εc(k) where εv(k) denotes the upper edge

of the projected bulk valence bands, while εc(k) denotes the

lower edge of the projected bulk conduction bands. As was

shown in Sec. II C, the embedding potential �̂(k,ε) becomes

an N × N Hermitian matrix within the projected bulk band

gap. Alternatively, one may prove this by making use of the

expression (16). The Green’s function in Eq. (16) can be

expressed using the spectral representation as

Ĝ(k,ε) =
∑

i

|�ki〉〈�ki |
ε + iη − εi

, (17)

where |�ki〉 denotes the ith eigenstate with energy εi of the

bulk truncated surface and η is a positive infinitesimal. As far

as ε is in the projected bulk band gap, the factor 1/(ε + iη − εi)

gives rise to no imaginary part, so that Ĝ, and consequently,

the N × N matrix Ĝ11 is Hermitian. This implies that �̂ =
Ĥk

01Ĝ11Ĥ
k
10 is also Hermitian. The only exception occurs when

the bulk truncated surface exhibits a surface band within the

projected bulk band gap. In this case, the embedding potential

�̂(k,ε) exhibits poles of first order on the energy dispersion

curve of the surface state, ε = εs(k).

Let us denote the pth real eigenvalue of �̂(k,ε) by λp (p =
1,2, . . . ,N). With each λp, one can associate an evanescent

wave with k and ε decaying toward l = +∞, |ϕp〉. Its value

on boundary layer 0, ϕ̃p(0), satisfies the eigenvalue equation,

�̂(k,ε) ϕ̃p(0) = λp ϕ̃p(0), (18)

while those on the subsequent layers with l � 1 are related to

ϕ̃p(0) by

ϕ̃p(l) = V̂ M̂ lV̂ −1ϕ̃p(0). (19)

By combining Eqs. (9) and (18), one has

λp ϕ̃p(0) = Ĥk
01 ϕ̃p(1), (20)

which indicates that |ϕp〉 is not a generalized Bloch state

satisfying Eq. (4). Instead, since �̂(k,ε) is Hermitian, |ϕp〉
(p = 1,2, . . . ,N) are evanescent waves that are orthogonal

to one another on boundary layer 0, i.e., one can choose the

eigenfunctions such that they satisfy

{ϕ̃p(0)}†ϕ̃q(0) = δpq . (21)

With this normalization, �̂(k,ε) is expressed as

�̂(k,ε) =
N

∑

p=1

λp ϕ̃p(0){ϕ̃p(0)}†, (22)

with its determinant given by

det[�̂(k,ε)] =
N

∏

p=1

λp. (23)

As stated above, Ĝ11 in Eq. (16), and thus, �̂(k,ε) exhibits a

pole if (k,ε) is on the surface-state energy dispersion curve of

the bulk truncated surface, ε = εs(k). Equation (22) implies

that one of the eigenvalues exhibits a pole on the energy

dispersion curve, i.e., λp ∼ C1[ε − εs(k)]−1 as ε → εs(k). On

the other hand, from Eq. (11) we have

det[�̂(k,ε)] = det[Ĥ01] det[V̂ ] det[M̂] det[V̂ −1]

= det[Ĥ01]

N
∏

i=1

µi . (24)

Since |µi | < 1 within the projected bulk band gap, the right-

hand side of Eq. (24) does not diverge when ε → εs(k).

This indicates that there must be another embedding-potential

eigenvalue λq that behaves as λq ∼ C2[ε − εs(k)] when

ε → εs(k).

Equation (11) also implies that the pole of the embedding

potential occurs when det[V̂ ] = 0, i.e., when the generalized

Bloch states ũi (i = 1,2, . . . ,N) are not linearly independent.

In this case, one can choose linear coefficients ci (i =
1,2, . . . ,N) such that

∑N
i=1 ci ũi = 0. Then, one can construct

an evanescent wave |ψ〉 whose value on layer l (l � 0) is

defined by

ψ̃(l) =
N

∑

i=1

ci µl
i ũi . (25)

|ψ〉 satisfies the Schrödinger equation of the bulk truncated

surface with l � 1 since ψ̃(0) = 0, so that it gives the surface-

state wave function of the bulk truncated surface.

The embedding-potential eigenvalue possesses a property

that its partial derivative with respect to energy ε is negative,

which can be proved by using Eqs. (16), (17), (18), and (21)

as

∂λp

∂ε
=

∂

∂ε
[{ϕ̃p(0)}†�̂(k,ε)ϕ̃p(0)]

= {ϕ̃p(0)}†
∂�̂(k,ε)

∂ε
ϕ̃p(0)

= −
∑

i

∣

∣{ϕ̃p(0)}†Ĥk
01�̃ki(1)

∣

∣

2

(ε + iη − εi)2
< 0, (26)

125413-4



TOPOLOGICAL INVARIANTS OF BAND INSULATORS . . . PHYSICAL REVIEW B 96, 125413 (2017)

where �̃ki(1) denotes the value of |�ki〉 on layer l = 1.

Equation (26) will be used to discuss the surface-state energy

dispersion with k in the subsequent sections.

F. Time-reversal symmetry

We rewrite Eq. (20) using the original mathematical

symbols,

λp

〈

χk
0n

∣

∣ϕp

〉

=
N

∑

n′=1

〈

χk
0n

∣

∣Ĥ
∣

∣χk
1n′

〉〈

χk
1n′

∣

∣ϕp

〉

. (27)

We take complex conjugate of the above equation. By noting

that λp is real and making use of 〈T̂ f |T̂ g〉 = 〈f |g〉∗ with T̂

denoting the time-reversal operator, we have

λp

〈

T̂ χk
0n

∣

∣T̂ ϕp

〉

=
N

∑

n′=1

〈

T̂ χk
0n

∣

∣T̂ Ĥ T̂ −1
∣

∣T̂ χk
1n′

〉〈

T̂ χk
1n′

∣

∣T̂ ϕp

〉

.

(28)

While the two orthonormal basis sets, {T̂ χk
0n} and {χ−k

0n }, are

not necessarily identical, we assume that they are related to

each other by a unitary transformation. Then, Eq. (28) reads

λp

〈

χ−k
0n

∣

∣T̂ ϕp

〉

=
N

∑

n′=1

〈

χ−k
0n

∣

∣T̂ Ĥ T̂ −1
∣

∣χ−k
1n′

〉〈

χ−k
1n′

∣

∣T̂ ϕp

〉

. (29)

Now, we assume that the bulk crystal under consideration

is time-reversal invariant, i.e., T̂ Ĥ T̂ −1 = Ĥ . In this case,

|T̂ ϕp〉 becomes a solution of the bulk Schrödinger equation

(evanescent wave) with energy ε and parallel wave vector −k

decaying toward l = +∞. With the notation |T̂ ϕp〉 = |ϕtr
p 〉,

Eq. (29) now reads

λp ϕ̃tr
p (0) = Ĥ−k

01 ϕ̃tr
p (1). (30)

On the other hand, since |ϕtr
p 〉 satisfies the outgoing boundary

condition at l = +∞, ϕ̃tr
p (0) and ϕ̃tr

p (1) are related by the

embedding potential,

�̂(−k,ε) ϕ̃tr
p (0) = Ĥ−k

01 ϕ̃tr
p (1). (31)

Combining the above two equations yields

�̂(−k,ε) ϕ̃tr
p (0) = λp ϕ̃tr

p (0), (32)

which indicates that λp is an eigenvalue of �̂(−k,ε), namely,

λp(−k,ε) = λp(k,ε). (33)

The wave vector k is called a time-reversal invariant

momentum (TRIM) point when k and −k are related by

k = (−k) + G‖ with G‖ being a reciprocal lattice vector

contained in the lattice plane of a single layer. From Eq. (33),

we see that the eigenstates of the embedding potential form

doubly degenerate Kramers pairs consisting of two orthogonal

states, |ϕp〉 and |ϕtr
p 〉, at the TRIM points.

G. Surface states

Here, we would like to show that ϕ̃p(0) satisfying the

eigenvalue equation Eq. (18) determines surface-state wave

functions of a semi-infinite surface with a particular boundary

condition. For this purpose, we introduce a semi-infinite

system with layer index l � 0 in which the Hamiltonian

matrices Ĥ k
l,l′ (l,l′ � 0) are assumed to be the same as those

in the bulk except for the surface diagonal component Ĥ k
00,

which is assumed to be Ĥ k
00 = εa Î with εa being an arbitrary

constant. Layer 0 may be interpreted as an overlayer with a

constant on-site energy εa adsorbed on a substrate represented

by the bulk truncated surface with l � 1. For this Hamiltonian,

we search a surface state |ψ〉 with wave vector k and a

yet unknown energy ε within the projected bulk band gap

εv(k) < ε < εc(k).

Since the Hamiltonian matrices are the same as those

in the bulk except for Ĥ k
00, ψ̃(l) for l � 1 can be ex-

pressed by a linear combination of the N evanescent waves

(µl
1ũ1,µ

l
2ũ2, . . . ,µ

l
N ũN ) with k and ε discussed in Sec. II B.

By choosing its unknown value on layer 0 as ψ̃(0), their values

on the subsequent layers are given by

ψ̃(l) = V̂ M̂ l V̂ −1 ψ̃(0). (34)

For any values of ψ̃(0), Eq. (34) satisfies the Schrödinger

equation,
∑

l′�0

Ĥ k
l,l′ ψ̃(l′) = ε ψ̃(l), (35)

except for l = 0. Now, we would like to determine the

unknown energy ε and ψ̃(0) such that Eq. (35) holds also

for layer 0, i.e.,

εa ψ̃(0) + Ĥk
01 ψ̃(1) = ε ψ̃(0). (36)

By substituting the relation

Ĥk
01 ψ̃(1) = �̂(k,ε) ψ̃(0), (37)

in Eq. (36), we have

�̂(k,ε) ψ̃(0) = (ε − εa) ψ̃(0). (38)

By comparing Eqs. (18) and (38), we see that for a given k,

the surface state energy ε is obtained by solving the equation,

λp(k,ε) = ε − εa (p = 1,2, . . . ,N). (39)

The corresponding surface state wave function on layer 0 is

given by the pth eigenvector of �̂(k,ε), i.e., ψ̃(0) = ϕ̃p(0),

and those on subsequent layers are calculated by Eq. (34).

In the following we consider a k-space path connecting

two symmetry points in the SBZ. For simplicity, we use a

scalar variable k to represent k on the path. It is useful to

consider a 3D orthogonal coordinate system (k,ε,λ) with the

kε plane chosen as the horizontal one and the λ axis pointing

in the vertical direction. Then, as schematically depicted in

Fig. 1(a), one can plot eigenvalues of �̂(k,ε) as 2D surfaces

λ = λp(k,ε) (p = 1,2, . . . ,N) in the 3D (k,ε,λ) space. With

this coordinate system, Eq. (39) becomes the equation for

the line of intersection between two 2D surfaces, λ = λp(k,ε)

and λ = ε − εa . Figure 1(b) shows the cross-section view of

these two surfaces on a vertical cut plane with a constant k,

illustrating how the surface-state energy εs(k) is graphically

solved.

Using Eq. (39) we find that the gradient of the surface-state

energy dispersion curve is given by

dεs

dk
=

∂λp(k,εs)

∂k

[

1 −
∂λp(k,εs)

∂ε

]−1

. (40)
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FIG. 1. (a) Schematic view of 2D surface λ = λp(k,ǫ) in 3D

(k,ǫ,λ) coordinate space along a k-space path in the SBZ. This surface

is defined only inside the projected bulk band gap ǫv(k) < ǫ < ǫc(k).

(b) Cross-section view of two 2D surfaces, λ = λp(k,ε) and λ =
ε − εa , on a plane with a constant k. The energy at the point of

intersection between two lines gives εs(k), the surface-state energy of

a semi-infinite system in which an overlayer (l = 0) with constant site

energy εa is adsorbed on the bulk truncated surface (l � 1) defined in

the text. (c) Cross-section view of two 2D surfaces, λ = λp(k,ε) and

λ = ε − εa , on a plane with a constant energy (ε1 or ε2). Two points,

(k1,ε1) and (k2,ε2), are on the surface-state energy dispersion curve of

the same surface as considered in panel (b). (d) Cross-section view of

λ = λp(k,ε) on a plane with a constant energy (ε1 or ε2). λ = λp(k,ε)

exhibits a pole at k = k1 for ε = ε1 and at k = k2 for ε = ε2. Two

points, (k1,ε1) and (k2,ε2), are on the surface-state energy dispersion

curve of the bulk truncated surface without an overlayer.

Since the denominator on the right-hand side of Eq. (40) is

positive due to the inequality (26), dεs

dk
and

∂λp(k,εs )

∂k
always have

the same sign. This can be understood more easily by using a

diagram. Let us consider the case with
∂λp(k,εs )

∂k
> 0. Figure 1(c)

shows the cross-section view of two surfaces, λ = λp(k,ε) and

λ = ε − εa , on a vertical cut plane with a constant energy (ε =
ε1 or ε2). Suppose that (k1,ε1) is on ε = εs(k). Then, two lines,

λ = ε1 − εa and λ = λp(k,ε1), intersect each other at k = k1.

Now, we increase the energy slightly from ε1 to ε2 = ε1 + �ε.

Since
∂λp(k,ε)

∂ε
< 0, the curve λ = λp(k,ε) shifts downward with

increasing ε, so that λ = λp(k,ε2) is located on the lower

side of λ = λp(k,ε1). As a result, two lines, λ = ε2 − εa and

λ = λp(k,ε2), intersect each other at k = k2, which is larger

than k1. This means that the gradient of the energy dispersion

curve, �ε/�k (�k = k2 − k1) is positive. In the same way one

can show �ε/�k < 0 if
∂λp(k,εs )

∂k
< 0. Equation (40) indicates

that the local behavior of the surface-state energy dispersion

curve is ruled by the eigenvalue function λ = λp(k,ε).

k
k kβα

λ

λ1

λ3

λ1

λ3

k
k kβα

λ

λ1

λ1λ3

λ3

(a) ν (b)

0k

ν=0 =1

FIG. 2. (a) Lines of intersection between surfaces λ = λp(k,ǫ)

(p = 1,2, . . . ,N ) and a vertical cut plane ǫ = ǫ0 for topologically

trivial case with ν = 0 (παπβ = 1), where ǫ0 is located inside the

projected band gap. Two states forming a Kramers pair at kα meet

again at kβ . (b) The same as (a) for a topologically nontrivial case

with ν = 1 (παπβ = −1). Two states forming a Kramers pair at kα

change partners at kβ .

We can make use of the inequality (26) again in discussing

the surface-state energy dispersion curve on the bulk truncated

surface, ε = εs(k). Let us assume that ε = εs(k) passes a point

(k1,ε1). In this case, as shown in Fig. 1(d), λ = λp(k,ε1) as

a function of k exhibits a pole at k = k1. In the vicinity

of k1, λp(k,ε1) is approximated by λ ∼ −A/(k − k1) with a

constant A determining the sign of
∂λp(k,ε1)

∂k
∼ +A/(k − k1)2

on both sides of the pole. In Fig. 1(d) it is assumed that A > 0.

Now, we increase the energy slightly from ε1 to ε2 = ε1 + �ε.

Since
∂λp(k,ε)

∂ε
< 0, the curve λ = λp(k,ε) shifts downward with

increasing ε. In this case, the pole of λ = λp(k,ε) should shift

gradually in the positive k direction with increasing ε and

reach k = k2, which is larger than k1. As a result, �ε/�k

(�k = k2 − k1), the gradient of ε = εs(k) at k = k1, becomes

positive if A > 0. In the same way one can show �ε/�k < 0

if A < 0.

H. Z2 topological invariants

Let us consider a k-space path connecting two TRIM

points in the SBZ, kα and kβ . Figures 2(a) and 2(b) show

schematically the lines of intersection obtained by cutting the

2D surfaces λ = λp(k,ε) (p = 1,2, . . . ,N) by a vertical cut

plane ε = ε0 with ε0 being an arbitrary value in the projected

bulk band gap. As mentioned in Sec. II F, these lines form N/2

degenerate Kramers pairs at both ends, kα and kβ . For the time

being, we assume that the system obeys no other symmetry

than time-reversal symmetry along the path. In this case, the

N lines λ = λp(k,ε0) (p = 1,2, . . . ,N) will not intersect one

another in the middle of the interval [kα,kβ]. Then, there should

be two distinct ways these lines are connected between kα and

kβ as shown in Figs. 2(a) and 2(b). In panel (a), two states in

a Kramers pair at kα meet again at kβ to form a Kramers pair,

whereas in panel (b), each state in a Kramers pair at kα switches

the partner at kβ . In the latter case, the set of line segments,

λ = λp(k,ε0) (p = 1,2, . . . ,N), forms a single continuous line

alternating between kα and kβ and ranging between λ = −∞
and +∞, thus exhibiting necessarily a pole at k = k0.
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In a recent work [41], two of the present authors revealed

that one can determine the Z2 topological invariant ν associ-

ated with two TRIM points [13,33] by plotting the eigenvalues

of the real-space embedding potential along a k-space path

within a projected bulk band gap connecting the two points.

Here, ν is related to the time-reversal polarizations at the

two TRIM points, πα and πβ , by (−1)ν = παπβ . Similarly to

Figs. 2(a) and 2(b), there are two distinct ways the embedding-

potential eigenvalues are connected between the two TRIM

points, and it was revealed that panel (a) corresponds to ν = 0

and panel (b) to ν = 1. More generally, one has ν = P mod 2

with P the number of poles that the embedding potential

exhibits along the k-space path. Because of the close similarity

between the LO based embedding potential and the real-space

scheme of Inglesfield, we may safely say that the same criterion

applies for the present LO based embedding potential.

So far, we have assumed that the system respects no

other symmetry than time-reversal symmetry along the path

connecting kα and kβ . If this is not the case, for example, if the

system is a TCI that respects certain crystal point-group opera-

tion along the k-space path, then the N lines λ = λp(k,ε0) (p =
1,2, . . . ,N) may be divided into different groups depending

on their eigenvalues with respect to the point-group operation.

Since the lines belonging to different eigenvalue groups can

intersect one another without interaction, it might happen

that the N lines behave qualitatively differently from those

in Figs. 2(a) and 2(b). Below we show that such a scenario

indeed occurs for 3D TCIs.

III. 2D TI: BHZ MODEL

We now demonstrate how the embedding-potential eigen-

values can be used for determining the topological invariants

of band insulators. In the present section, we discuss the BHZ

model representing a 2D Z2 TI [9]. In the following section, we

discuss SnTe, a 3D TCI with a nonzero mirror Chern number

nM [21].

The BHZ tight-binding Hamiltonian is a two-orbital model

defined on a 2D square lattice [9]. To compute the embedding

potential for its surface oriented in the [01] direction, the x

and z axes are chosen to be parallel to the two sides of square

unit cells. Then, as shown by a dashed line in Fig. 3(a), each

“layer” becomes a one-dimensional (1D) lattice with a single

lattice point per unit cell. Basis functions on each lattice point

are specified by orbital index α = 1,2 and spin index σ =
↑(+1),↓(−1), so that the number of basis functions per layer

equals N = 4. Furthermore, the BHZ Hamiltonian is diagonal

with respect to spin index σ . Thus, the 4 × 4 matrix Ĥk
l,l′

defined in Sec. II A also becomes block diagonal with respect

to σ . We denote the 2 × 2 submatrix for each spin component

by Ĥ
kx ,σ
l,l′ , which contains the Hamiltonian matrix elements

between two orbitals α = 1,2 with the same spin. They are

given by

Ĥ
kx ,σ
00 =

(

ε1 + 2t1 cos kx 2σ t12 sin kx

2σ t12 sin kx ε2 + 2t2 cos kx

)

, (41)

Ĥ
kx ,σ
01 =

(

t1 t12

−t12 t2

)

, Ĥ
kx ,σ
10 =

(

t1 −t12

t12 t2

)

, (42)

zz

xx

y

(a) (b) ll-1 l+1 l+2ll-1 l+1 l+2

FIG. 3. (a) Bernevig-Hughes-Zhang model on a 2D square lattice.

(b) SnTe or PbTe crystallized in rock-salt structure.

where εα (ε2 > ε1) and tα (t2 > 0 > t1) are the site energies

and the nearest-neighbor hopping integrals for orbitals α =
1,2, while t12 denotes the magnitude of the hopping integral

between orbital 1 at the origin and orbital 2 on one of its

four nearest-neighbor sites. Here we have chosen the lattice

constant of the square lattice as unity. According to previous

theoretical works [31,33], the present model represents a trivial

band insulator (ν = 0) if the α = 1 and 2 bands do not overlap

energetically, namely, if the inequality

ε2 − ε1 > 4(|t1| + |t2|) (43)

holds. On the other hand, if the inequality sign in the above

equation is reversed, the system becomes a 2D TI with ν = 1.

A. Embedding potential eigenspectrum

We consider two parameter sets to illustrate distinct phases.

For the topological phase with ν = 1, we choose model

parameters as ε1 = −1.5, ε2 = 1.5, t1 = −1, t2 = 1, and

t12 = 0.5. For the topologically trivial phase with ν = 0, we

choose them as ε1 = −1.5, ε2 = 1.5, t1 = −0.15, t2 = 0.15,

and t12 = 0.5. In part I of the Supplemental Material [55] we

present a detailed discussion of the complex band structure of

both systems.

Solid and dashed lines in Fig. 4 show the embedding-

potential eigenvalues of the BHZ Hamiltonian along a constant

energy path ε = 0.5 within the projected bulk band gap over

the whole BZ, −π � kx � π . Panels (a) and (b) correspond to

the aforementioned two cases with ν = 1 and 0, respectively.

Here, we have chosen to plot tan−1 λp rather than λp in order to

be able to better show its behavior near the poles: In the vicinity

of a pole at kx = k0, λp may behave as λp ∼ −A/(kx − k0), in-

dicating that tan−1 λp → ±π/2 while ∂
∂kx

tan−1 λp → +1/A

as kx → k0, so that the value of tan−1 λp jumps by π while

its derivative with respect to kx remains the same, when kx

crosses the pole.

Since the BHZ Hamiltonian is diagonal with respect to the

spin index σ , the embedding potential �̂(kx,ε) is also diagonal

with respect to σ , and �̂(kx,ε) for each spin component has
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FIG. 4. Embedding-potential eigenvalues of the BHZ Hamilto-

nian, λp(kx,ε) (p = 1 to 4), as a function of kx at ε = 0.5. In panel (a),

ε1 = −1.5, ε2 = 1.5, t1 = −1, t2 = 1, and t12 = 0.5, indicating Z2

topological invariant ν = 1. The parameters in (b) are the same as

those in (a) except for t1 = −0.15 and t2 = 0.15, implying ν = 0.

Orange (solid) and green (dashed) lines represent eigenvalues for

up-spin and down-spin electrons, respectively. The red (dot-dashed)

lines in panel (a) show the two uppermost branches of λp(kx,ε) at a

higher energy ε = 0.75 near kx = ±π .

two eigenvalues at a given kx . In contrast to the complex

band structure [55], these eigenvalues are not degenerate

with respect to spin index σ . The eigenstates of the up-spin

component at kx and those of the down-spin component at

−kx are related by time-reversal operation. Hence, at the two

TRIM points, kx = 0 and π (−π ), two eigenstates with both

spin components form a degenerate Kramers pair. In panel

(a), each eigenstate in a Kramers pair at kx = 0 switches the

partner at kx = π , thus indicating ν = 1, whereas in panel (b)

two states in a Kramer pair at kx = 0 meet again at kx = π ,

thus indicating ν = 0. These results are in full accord with

the discussion in Sec. II H concerning the behavior of the

embedding-potential eigenvalues along a path linking two

TRIM points.

To illustrate the energy dependence of the embedding-

potential eigenvalues, we also plotted two uppermost branches

of the λp values at a slightly larger energy ε = 0.75 (only near

kx = ±π ) by dot-dashed lines in Fig. 4(a). As discussed in

Sec. II G, λp shifts downward monotonously with increasing

ε. As a consequence, the pole of the highest branch at

kx = −0.83π (+0.83π ) shifts to a larger (smaller) kx value

with increasing ε, which agrees with the schematic diagram

shown in Fig. 1(d).

Here, it should be remarked that as discussed in Sec. II E,

when one of the embedding-potential eigenvalues exhibits a

pole at (k0,ε0), there must be another eigenvalue that tends

to zero as (kx,ε) → (k0,ε0). Indeed, as seen from Fig. 4(a),

one eigenvalue of the up-spin (down-spin) component tends to

zero as kx → −0.83π (+0.83π ).

In Fig. 4, we have chosen on-site energies of two orbitals as

ε1 = −1.5 and ε2 = 1.5. In this case, the Z2 topological invari-

ant should undergo a transition between ν = 1 and ν = 0 when

|t1| + |t2| goes across the critical value (ε2 − ε1)/4 = 0.75 as

indicated by Eq. (43). In part II of the Supplemental Material

FIG. 5. (a) Intensity plot of ρ1(kx,ε), kx-resolved DOS of the

outermost layer, for the bulk truncated surface with ε1 = −1.5, ε2 =
1.5, t1 = −1, t2 = 1, and t12 = 0.5. (b) ρ0(kx,ε), kx-resolved DOS of

the overlayer (l = 0) with on-site energy εa = 0.0 adsorbed on top

of the bulk truncated surface in panel (a). (c) The same as (a) except

for t1 = −0.15 and t2 = 0.15. (d) The same as (b) adsorbed on top of

the bulk truncated surface in panel (c). In all panels, dark and bright

regions represent projected bulk bands and projected bulk band gaps,

respectively. Discrete bands appearing in projected band gaps are

localized surface states. Small imaginary energy γ = 10−3 is used

to broaden the δ-function-like peaks of surface bands. Dashed (red)

lines in panels (a) and (c) indicate constant energy path ε = 0.5, along

which the embedding-potential eigenvalues in Fig. 4 are plotted.

[55] we discuss how the embedding-potential eigenvalues

behave in the vicinity of this critical value.

B. Local density of states

In Fig. 4(a), the embedding-potential eigenvalues exhibit

two poles at kx = ±0.83π . As discussed in Sec. II E, this

indicates that localized surface states emerge on the bulk

truncated surface and their energy dispersion curve ε = εs(kx)

intersects ε = 0.5 at kx = ±0.83π . Furthermore, the gradient

of the dispersion curve at kx = −0.83π (+0.83π ) should

be positive (negative). To confirm this, we calculated the

kx-resolved density of states (DOS) of layer l defined by

ρl(k,ε) = −
1

π
Im Tr Ĝl,l(k,ε + iγ ). (44)

In Fig. 5(a) we show the intensity plot of the DOS of the

outermost layer, ρ1(kx,ε), with the same parameter set as

used in Fig. 4(a), where a small imaginary energy γ =
10−3 was introduced to broaden δ-function-like DOS peaks

of localized surface bands. Since the present system is a

topological insulator with ν = 1, gapless edge states emerge

within the projected bulk band gap, and it is seen that their
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energy dispersion curves intersect ε = 0.5 (dashed red line) at

kx = 0.83π and 1.17π (−0.83π ) and also that their slopes at

kx = 0.83π and 1.17π are negative and positive, respectively,

as expected.

In Fig. 5(a) one has a single surface band for each spin

component crossing the bulk band gap. Since there exist four

embedding-potential eigenvalues at a given kx , one can have

more surface bands by modifying the boundary condition

at the surface. As an example, we consider a semi-infinite

surface introduced in Sec. II G in which a single layer (l = 0)

expressed by a Hamiltonian matrix Ĥ k
00 = εa Î is adsorbed on

top of the same bulk truncated surface with l � 1. Figure 5(b)

shows the calculated overlayer DOS ρ0(kx,ε) for the case of

εa = 0.0. As shown in Fig. 1(b), the surface state energies

at a given kx are those at the points of intersection between

λ = λp(kx,ε) (p = 1 to 4) and λ = ε − εa = ε. In the present

case, each of the four eigenvalue curves intersects once the line

λ = ε in the energy gap, so that four surface bands emerge in

the projected bulk band gap except for the vicinity of kx = π .

Figure 5(c) shows the DOS of the outermost layer, ρ1(kx,ε),

for the bulk truncated surface with the same parameter as in

Fig. 4(b). As is seen, this surface exhibits no surface states

within the projected bulk band gap. Yet, it is possible to induce

surface bands by modifying the boundary condition of wave

functions at the surface. As an example we put an overlayer

with εa = 0.0 similarly to the case of Fig. 5(b). The overlayer

DOS of the resultant surface, ρ0(kx,ε), plotted in Fig. 5(d)

exhibits four surface bands throughout the SBZ −π � kx � π .

It is seen that two surface states in a Kramers pair at kx = 0

meet again at kx = π , which is in accord with the Z2 invariant

ν = 0 for the present system.

IV. 3D TCI

As the second application, we consider tin telluride (SnTe)

crystallized in a rock-salt structure. SnTe is a TCI whose

topological state of matter is protected by the mirror symmetry

about the (110) or equivalent lattice planes [21–24]. The results

for this 3D TCI are also compared to those for the closely

related trivial band insulator PbTe.

Let us consider a 2D plane K in the momentum space which

is invariant with respect to mirror reflection operation R̂M , i.e.,

every wave vector on K is mapped by R̂M onto itself or onto an

equivalent one differing only by a 3D reciprocal lattice vector.

Bloch states whose 3D wave vector lies on K can be labeled

by a mirror parity eigenvalue, +i or −i (note that R̂2
M = −Î

because of 2π rotation in the spin space). Hence, within the

2D BZ on K , the occupied valence bands are divided into two

groups depending on whether their mirror parity eigenvalues

are +i or −i. For each of the two groups, one can define a

topological invariant, n+i or n−i , by summing up the Chern

numbers of all the bands in the same group. Then, the mirror

Chern number is defined by

nM = (n+i − n−i)/2.

For time-reversal invariant systems, nM becomes an integer

since n+i = −n−i holds. If nM is nonzero, any crystal

surface which is symmetric about the mirror operation R̂M

exhibits topologically protected gapless surface bands along

the symmetry line obtained by projecting K onto the SBZ.

FIG. 6. (a) Intensity plot of the k-resolved DOS for the outermost

layer, ρ1(k,ε), of a bulk truncated SnTe(001) surface along the Ŵ̄-X̄

and X̄-M̄ lines. (b) The same as (a) for PbTe(001). Small imaginary

energy γ = 10−3 eV is used to broaden the δ-function-like peaks of

surface bands.

It was shown that SnTe exhibits nM = −2 with regard to the

(110) and equivalent mirror planes [21].

We calculate the embedding-potential eigenvalues of SnTe

for the (001) surface. As shown in Fig. 3(b), each “layer”

contains a single (001) lattice plane forming a square lattice

with a unit cell containing a Sn atom at x = (0,0) and a Te

atom at x = ( a
2
,0) with a being the cubic lattice constant of

SnTe. With this choice of the coordinate system, the four TRIM

points in the SBZ are kŴ̄ = (0,0), kX̄ = (π
a
,π

a
), kȲ = (−π

a
,π

a
)

(equivalent to X̄), and kM̄ = (0, 2π
a

). SnTe is topologically

trivial with respect to time-reversal symmetry, having the 3D

Z2 invariants (ν0; ν1ν2ν3) = (0; 0,0,0) [33]. Thus, the ν values

associated with the Ŵ̄-X̄, Ŵ̄-M̄ , and X̄-M̄ lines are all ν = 0.

The above three symmetry lines are invariant with respect to

the mirror operation about the (1̄10), (100), and (110) lattice

planes, respectively, so that one can define the mirror Chern

number nM for each of the three lines. Among them, only nM

associated with the Ŵ̄-X̄ line has a nonzero value nM = −2.

A. Surface energy bands

To describe the band structure of SnTe, we adopt the

nearest-neighbor tight-binding model Hamiltonian proposed

by Lent et al. [56] which incorporates the SO coupling. As

basis functions they employed nine orbitals (s, px , py , pz,

dx2−y2 , d3z2−r2 , dxy , dyz, and dzx) for each atom per spin.

Thus, the number of basis functions per layer amounts to N =
9 × 2 × 2 = 36, indicating that the dimension of the embed-

ding potential �̂(k,ε) and the number of its real eigenvalues

within the projected bulk band gap both are N = 36. For

comparison, we also consider isocrystalline telluride PbTe

with vanishing mirror Chern number nM = 0. The tight-

binding parameters of both materials are listed in Ref. [56].

Figure 6(a) shows the calculated DOS of the outermost

layer, ρ1(k,ε) defined by Eq. (44), for a semi-infinite bulk

truncated SnTe(001) surface along the Ŵ̄-X̄ and X̄-M̄ lines,

where we focus a small area near the X̄ point where the

projected bulk band gap becomes the smallest. In contrast

to the corresponding DOS for PbTe(001) shown in panel (b),

SnTe(001) exhibits two surface bands crossing the band gap
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FIG. 7. Embedding-potential eigenvalues λp(k,ε)

(p = 1,2, . . . ,N = 36) for (a) SnTe(001) and (b) PbTe(001)

along the Ŵ̄-M̄ line (left half) and the M̄-X̄ line (right half) at an

energy within the band gap, ε = 0.075 eV, indicated by red lines in

Fig. 6. Two insets in panel (a) illustrate the enlargement of a small

area indicated by blue arrows.

along the Ŵ̄-X̄ line. The two bands intersect each other without

interactions at (kD,εD) = (0.91kX̄,0.14) forming a 2D Dirac

point in the energy dispersion relation of the surface bands.

Electron energy bands are periodic along the k-space line

passing Ŵ̄ and X̄, and one period (whole 1D BZ) is given by the

interval, −kX̄ → kŴ̄ → kX̄ with two end points related by a

2D reciprocal lattice G‖ = ( 2π
a

, 2π
a

). Because of time-reversal

symmetry, another Dirac point emerges at (−kD,εD).

B. Embedding potential eigenspectrum

We begin with the topologically trivial Ŵ̄-M̄ and M̄-X̄

lines. In Fig. 7 we plot the calculated λp(k,ε) values (p =
1,2, . . . ,N = 36) for (a) SnTe(001) and (b) PbTe(001) along

the Ŵ̄-M̄-X̄ line on a constant energy path within the band

gap, ε = 0.075 eV, which is indicated by red lines in Fig. 6.

As aforementioned, the k points along the Ŵ̄-M̄ and M̄-X̄

lines are invariant with respect to mirror operations about

the (100) and (110) planes, respectively, so that λp(k,ε)

can be divided into two groups according to whether the

corresponding eigenfunction |ϕp〉 has mirror parity +i or −i.

In Fig. 7, those with +i are shown by solid (orange) lines,

while those with −i are shown by dashed (green) lines.

As discussed in Sec. II F, |ϕp〉 at k and its time-reversal

state |T̂ ϕp〉 at −k form a Kramers pair having the same

embedding-potential eigenvalue λp. It is easy to show that

these two states have opposite mirror parity values. Namely,

two states with (k,±i) and (−k,∓i) emerge always as a pair

in the k vs λp plot along a symmetry line in the SBZ that is

invariant with respect to mirror operation. This explains why

doubly degenerate Kramers pairs at the three TRIM points,

Ŵ̄, M̄ , and X̄, shown in Fig. 7 are always made out of two

states with opposite mirror parity values. The Z2 invariants

associated with Ŵ̄-M̄ and M̄-X̄ are ν = 0 for both SnTe and

PbTe. As a result, two states in a degenerate Kramers pair at

Ŵ̄ meet again to form a Kramers pair at M̄ along the Ŵ̄-M̄ line

for both materials. This is in line with ν = 0. The same applies

also for the M̄-X̄ line.

As seen in Fig. 6(a), the bulk truncated SnTe(001) surface

exhibits surface bands along the M̄-X̄ line and one of them

intersects ε = 0.075 eV (red line) at k1 and k2. As discussed in

Sec. II E, the embedding-potential eigenvalues exhibit poles on

the surface-state energy dispersion curves of a bulk truncated

surface. Indeed, the uppermost eigenvalue curve with mirror

parity −i in Fig. 7(a) exhibits two poles at k1 and k2.

We now discuss the variation of λp(k,ε) along the Ŵ̄-X̄

direction. In Figs. 8(a) and 8(b), we show the calculated

embedding-potential eigenvalues λp(k,ε) along the Ŵ̄-X̄ line

at a constant energy ε = 0.075 eV for (a) SnTe(001) and

(b) PbTe(001), respectively. The Z2 invariant associated with

Ŵ̄-X̄ is ν = 0 for both materials. Thus, as expected, two states

of a degenerate Kramers pair at Ŵ̄ meet again to form a

Kramers pair at X̄ for PbTe(001). On the other hand, it is

surprising to see that two states in a degenerate Kramers

pair at Ŵ̄ switch partners at the X̄ point for SnTe(001) in

panel (a). Looking into more details, one sees that two states

forming a Kramers pair at Ŵ̄ switch partners and belong

to two Kramers pairs at X̄, which are the second nearest

neighbors with each other. As a consequence, the line segments

λ = λp(k,ε) (p = 1,2, . . . ,N) are divided into two groups,

named “a” and “b”, each of which forms an infinite continuous

line starting from λ = −∞ at a pole (at k3 for line “a” and

at k4 for line “b”) and alternating between Ŵ̄ and X̄ before

diverging to λ = +∞. The two lines can intersect one another

without interactions since they have opposite mirror parity at

all the points of intersection. This, on the other hand, indicates

that the behavior of the embedding-potential eigenvalues can

qualitatively change when the k-space path connecting the

two end points deviates slightly off the mirror symmetry

line. To demonstrate this, we show in Figs. 8(c) and 8(d) the

embedding-potential eigenvalues of SnTe(001) and PbTe(001)

along a minor arc (smaller than semicircle) with radius kr

connecting the Ŵ̄ and X̄ points. Here, we have chosen kr as√
5|kX̄|/2. For PbTe with nM = 0, the eigenvalue curves in

panels (b) and (d) are very similar. On the other hand, for SnTe

with nM = −2, in clear contrast to panel (a), two states forming

a Kramers pair at Ŵ̄ in panel (c) meet again at X̄, which is in

accord with the Z2 topological invariant ν = 0. By comparing

Figs. 8(a) and 8(c), we see that the eigenvalues in panel (a) are

converted into those in panel (c) in a continuous manner by
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FIG. 8. Upper two panels: Embedding-potential eigenvalues of

(a) SnTe(001) and (b) PbTe(001) at ε = 0.075 eV along the Ŵ̄-X̄ line.

Solid (orange) and dashed (green) lines indicate that corresponding

eigenstates |ϕp〉 have mirror parity values, +i and −i, about the

(1̄10) plane, respectively. (At −k, the eigenvalues are the same as

at +k, except that solid (orange) and dashed (green) curves are

interchanged.) Lower two panels: Embedding-potential eigenvalues

of (c) SnTe(001) and (d) PbTe(001) at ε = 0.075 eV along a k-space

minor arc with radius kr connecting two end points, Ŵ̄ and X̄, where

kr is chosen as kr =
√

5|kX̄|/2.

opening a finite “λ gap” at every point of intersection between

the two lines, “a” and “b”, in panel (a).

Returning to Fig. 6(a), it is seen that two surface bands on

the bulk truncated SnTe(001) surface intersect ε = 0.075 eV

(red line) along the Ŵ̄-X̄ line at k3 and k4. Correspondingly,

the embedding-potential eigenvalues of SnTe(001) at ε =
0.075 eV in Fig. 8(a) exhibit two poles at k3 and k4. As

is seen, the two eigenstates corresponding to the two poles

possess opposite mirror parity values. This explains why the

two surface bands intersect each other at the Dirac point

(kD,εD) without interactions.

In the case of a TI with ν = 1, a gapless surface band

emerges when the embedding-potential eigenvalues switch

partners at the two TRIM points as schematically shown in

Fig. 2(b). Considering this, it is tempting to argue that two

gapless surface bands emerge on SnTe(001) along the Ŵ̄-X̄ line

since there are two sets of embedding-potential eigenvalues,

“a” and “b”, that switch partners at Ŵ̄ and X̄. While this may be

the case for SnTe, we should remember that the degeneracy of

FIG. 9. Embedding-potential eigenvalues λp(k,ε) having mirror

parity +i about the (1̄10) mirror plane over the whole 1D BZ,

−kX̄ → kŴ̄ → kX̄ , on a constant energy path ε = εD (0.14 eV).

(a) SnTe(001) and (b) PbTe(001). The N/2 = 18 eigenvalues are

numbered in ascending order at two end points. εD denotes the

Dirac-point energy of the surface bands on SnTe(001) along the Ŵ̄-X̄

line shown in Fig. 6(a).

the embedding-potential eigenvalues at Ŵ̄ and X̄ is a property

of time-reversal symmetry rather than mirror symmetry. TCIs

with a nonzero mirror Chern number exhibit gapless surface

bands even when they do not respect time-reversal symmetry.

That is, we should be able to explain the emergence of gapless

surface states on the surfaces of TCIs without invoking the

degeneracy of the embedding-potential eigenvalues at the

TRIM points.

C. Mirror Chern number

In order to identify the characteristic feature of the

embedding-potential eigenvalues intrinsic to TCIs, we plot in

Fig. 9 the λp(k,ε) values for (a) SnTe(001) and (b) PbTe(001)

over the whole 1D BZ, −kX̄ → kŴ̄ → kX̄, on a constant

energy path ε = εD (0.14 eV), with the 1D k axis pointing

to the direction from −kX̄ to kX̄. |ϕp〉 (p = 1,2, . . . ,N) along

the k-space path are divided into two groups depending on

the parity values about the (1̄10) mirror plane, and we plot in

Fig. 9 only the N/2 = 18 λp(k,εD) values with mirror parity

+i. (The eigenvalues with mirror parity −i are obtained by

replacing k with −k, see below.) The two end points, −kX̄ and

kX̄, are equivalent, so that all the eigenvalues are the same at

the two points. We numbered these eigenvalues, λ1 through

λ18, in ascending order.

It is seen that the eigenvalue curves for PbTe starting from

λp at −kX̄ return to the same value λp at kX̄, so that the

eigenvalues form a periodic function over the whole 1D BZ.

On the other hand, the eigenvalue curves for SnTe starting

from λp at −kX̄ do not come back to the original value after

passing through the 1D BZ. Instead, they are linked to λq with

q = p − 2 (p � 3) at the end point kX̄. The difference q − p

is equal to n+ = −2, the total Chern number of the valence

bands with mirror parity +i. As for the two lowest ones with

p = 1 and 2, the eigenvalue curves starting from λp at −kX̄

diverge to −∞ at a pole, emerge from +∞ after crossing the
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FIG. 10. Magnified view of Fig. 9(a) in bottom region with

tan−1 λp � −0.85 near (a) k = −kX̄ and (b) k = kX̄ . In addition

to the curve λ = λp(k,ε) at ε = 0.14 eV, corresponding ones at three

lower energies ε = 0.12,0.10, and 0.075 eV are also plotted.

pole, until they are connected to λq with q = p − 2 + N/2

at kX̄.

The positions of these poles vary with energy. In Fig. 9(a),

where ε is chosen to be εD = 0.14 eV, the curve starting

from λ1 exhibits a pole at −kD before reaching λ17, whereas

the curve starting from λ2 exhibits a pole at +kD before

reaching λ18. Since ∂
∂k

tan−1 λp < 0 at both poles, according

to the discussion in Sec. II G, they should shift in the positive

k direction with decreasing energy. In fact, as shown in Fig. 10,

when ε is gradually lowered to 0.075 eV (red line in Fig. 6), the

two poles move in the positive k direction and reach −k3 and

+k4, respectively. The one-to-one correspondence between

the embedding-potential poles and the surface-state energies

then indicates that two surface bands with mirror parity +i

intersect ε = 0.14 (0.075) eV at kD and −kD (k4 and −k3) on

the bulk truncated SnTe(001) surface as seen in Fig. 6(a). The

slopes of both energy-dispersion curves are negative at these

energies.

The Chern number n+ specifies not only the number of

the surface bands with mirror parity +i but also the current

direction carried by them. To be more accurate, n+ = −2

indicates that the number of surface states that intersect ε = ε0

with dεs (ε0)

dk
> 0 minus the corresponding one with dεs (ε0)

dk
< 0

should be n+ = −2. This is consistent with the behavior of the

embedding-potential eigenvalue curves in Fig. 9(a), where the

sign of ∂
∂k

tan−1 λp at the two poles is negative.

The qualitative behavior of the eigenvalues discussed above

does not depend on the choice of the energy path. One may

consider a curvy path ε = ε0(k) satisfying the conditions,

εv(k) < ε0(k) < εc(k) and ε0(−kX̄) = ε0(kX̄), instead of a

constant energy path. In this case also, the eigenvalue curve

starting from λ1 (λ2) at −kX̄ should exhibit at least one pole

in order to reach λ17 (λ18) at kX̄, which indicates that the path

ε = ε0(k) intersects the energy dispersion curves of surface

states with mirror parity +i twice between −kX̄ and kX̄.

Since the path ε = ε0(k) can be chosen arbitrarily within the

projected bulk band gap, there must be two surface bands with

mirror parity +i crossing the band gap.

In the present case, the embedding-potential eigenvalues

with mirror parity −i are obtained simply by inverting the

k axis in Fig. 9(a) about k = 0 thanks to time-reversal

symmetry. Then, we will see that the eigenvalue curves with

mirror parity −i starting from λp at −kX̄ is linked to λq

with q = p + 2 (p � 16). The difference q − p is equal to

n− = +2, the total Chern number of the valence bands with

mirror parity −i. As for the two highest ones with p = 17 and

18, the eigenvalue curves starting from λp at −kX̄ diverge to

+∞ at a pole, emerge from −∞ after crossing the pole, until

they are connected to λq with q = p + 2 − N/2 at kX̄. By the

same reasoning as above, one can say that there emerge two

gapless surface bands with mirror parity −i within the whole

BZ. Furthermore, their energy dispersion curves should have a

positive velocity dεs

dk
> 0 when they intersect a constant energy

path ε = ε0 within the projected bulk band gap.

Putting together all the cases, we have the equation

q − 1 = (p − 1 + n±) mod
N

2
(p,q = 1,2, . . . ,N/2), (45)

which describes how the embedding-potential eigenvalues are

connected between two zone boundary points of the whole

1D BZ. One can also express this relationship via a winding-

number-like equation,

n± =
1

π

N/2
∑

p=1

∫ kX̄

−kX̄

∂

∂k
tan−1 λp(k,ε0) dk, (46)

where ε0 lies in the projected bulk band gap and the summation

is taken over all eigenvalues with either mirror parity +i

or −i. We infer that the above two equations may hold for

other TCIs than SnTe as well, since they ensure the existence

of surface bands on a bulk truncated surface that possess

properties conforming to a given mirror Chern number with

respect to both the number of surface bands and the gradient

of their dispersion curves. In part III of the Supplemental

Material to this paper [55], we present a short discussion on

the relationship between the Z2 invariant and the mirror Chern

number.

V. DISCUSSION AND SUMMARY

As pointed out in the Introduction, several alternative

methods are available for determining topological invariants

of bulk materials [34–40]. The method based on the flow of

the hybrid WCCs is especially efficient since it requires only

the calculation of bulk Bloch states [37,38]. Compared to this

method, the key advantage of the present scheme is that the

embedding potential can be used not only for determining

topological invariants of a bulk crystal but also for studying

the interface between two materials, as will be demonstrated

in the Appendix.

The topological phase of a bulk material can also be

determined from the flow of surface bands within the band

gap. In general, this requires the evaluation of the surface

Green’s function on a dense mesh of 2D (k,ε) points which

is computationally more demanding than determining the

eigenspectrum of the embedding potential at a single energy.

Of course, if one is interested only in the Z2 invariant, which

is given by the parity of the number of surface bands crossing

a line ε = ε0, one can work at a single energy ε0. However,

to determine the Chern number, one must vary the energy

value in order to determine the gradient of the dispersion

curves of surface bands. In this regard, the present method

is computationally advantageous.
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As a final remark, we like to emphasize that computing

the surface Green’s function Ĝ(k,ε) of a semi-infinite system

described by a tight-binding Hamiltonian is nowadays quite

easy since efficient numerical methods are available [51–54].

Indeed, the surface DOS spectra on a semi-infinite surface

of several topological insulators were reported in the past

[57–59]. As seen from Eq. (16), the LO based embedding

potential is obtained from the surface Green’s function just

by two matrix multiplications. Hence, the evaluation of this

embedding potential is straightforward. It should also be noted

that the same quantity is widely used in electron-transport

calculations for interfaces [48–50].

In summary, the LO based embedding potential of a semi-

infinite crystal is a function of the planar wave vector k and

the one-electron energy ε. It is essentially a bulk quantity that

can be constructed from the generalized Bloch states of a bulk

tight-binding Hamiltonian. The embedding potential becomes

Hermitian when ε is located within a projected bulk band

gap. Its real eigenvalues exhibit distinctly different behavior

depending on the topological properties of the valence bands,

thus allowing for unambiguous determination of topological

invariants of band insulators. To illustrate this, we have

presented numerical results for the 2D BHZ Hamiltonian as

an example of a 2D time-reversal invariant TI and for SnTe in

a rock-salt structure as an example of a 3D TCI with a nonzero

mirror Chern number.
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APPENDIX: INTERFACE BETWEEN BHZ-MODEL

SYSTEMS

To demonstrate that the LO based embedding potential is a

useful quantity for studying interface properties, we consider

an interface between two semi-infinite TIs represented by the

BHZ model. Since the BHZ Hamiltonian is spin diagonal,

one can define the spin Chern number, ns = (n↑ − n↓)/2,

similar to the mirror Chern number discussed in Sec. IV. In the

right-hand-side system (l � 1), we use the same Hamiltonian

parameters as those in Fig. 4(a). By applying Eq. (45) to the

λp values at both ends of the 1D Brillouin zone in Fig. 4(a), we

see that Chern numbers of both spin components are given by

n↑ = +1 and n↓ = −1. In the left-hand-side system (l � 0),

ε1 and ε2 are changed to −0.75 and 0.75, respectively. In

addition, the sign of the hopping integral t12 in the x direction

[see Fig. 3(a)] is reversed in order to reverse the sign of the

spin Chern number of the left-hand-side system. Figures 11(a)

and 11(b) show the surface DOS spectra of both systems for

the up-spin component when two systems are separated. Both

surfaces exhibit a metallic surface band with dεs/dkx > 0,

FIG. 11. (a) Surface DOS of up-spin electrons for the right-hand-

side system, ρ1(kx,ε), and (b) that for the left-hand-side system,

ρ0(kx,ε), when both systems with opposite spin Chern numbers

are decoupled. (c) and (d): DOS spectra of up-spin electrons at

the interface layer (l = 1) when both systems are fully coupled. In

panel (c), both systems have opposite spin Chern numbers, while they

share the same spin Chern number in panel (d).

whose sign is consistent with the n↑ values of both systems.

Here, it should be noted that the sign of dεs/dkx is reversed

between the top and bottom surfaces of a crystal.

Now, we couple both systems by switching on the interlayer

hopping terms, which are assumed to be the same as in the

bulk. The DOS spectrum at the interface can be calculated

easily from the Green’s function of the interface layer (l = 1),

Ĝ11(kx,ε) =
[

εÎ − Ĥ
kx

11 − �̂L − �̂R

]−1
, (A1)

where �̂L (�̂R) denotes the LO based embedding potential

of the semi-infinite system on the left-hand (right-hand) side.

Figure 11(c) shows the DOS spectrum of up-spin electrons

at the interface layer. Since both systems possess opposite

spin Chern numbers, metallic states with topological origin

appear at the interface. The surface bands of both systems

shown in Figs. 11(a) and 11(b) have the same spin. Thus,

they interact and split, resulting in the two interface bands

shown in panel (c). Now, we reverse the sign of the spin Chern

number of the left-hand-side system again by reversing the

sign of t12 in the x direction. Figure 11(d) shows the resultant

DOS spectrum of up-spin electrons at the interface. Since both

systems are now in the same topological phase, the metallic

edge states at the interface disappear.
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