000860519 001__ 860519
000860519 005__ 20240625085719.0
000860519 0247_ $$2doi$$a10.7566/JPSJ.86.114704
000860519 0247_ $$2ISSN$$a0031-9015
000860519 0247_ $$2ISSN$$a1347-4073
000860519 0247_ $$2WOS$$aWOS:000414001900023
000860519 037__ $$aFZJ-2019-01255
000860519 082__ $$a530
000860519 1001_ $$0P:(DE-Juel1)136909$$aFukushima, Tetsuya$$b0$$ufzj
000860519 245__ $$aLocal Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi
000860519 260__ $$aTokyo$$bThe Physical Society of Japan$$c2017
000860519 3367_ $$2DRIVER$$aarticle
000860519 3367_ $$2DataCite$$aOutput Types/Journal article
000860519 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552576262_31636
000860519 3367_ $$2BibTeX$$aARTICLE
000860519 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860519 3367_ $$00$$2EndNote$$aJournal Article
000860519 520__ $$aHigh entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa–Kohn–Rostoker Green’s function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from −1.70 μB to +1.01 μB with an average of about −0.51 μB. We present a new method to calculate “local energies” of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.
000860519 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000860519 536__ $$0G:(DE-Juel1)jiff02_20120501$$aQuantum description of nanoscale processes in materials science (jiff02_20120501)$$cjiff02_20120501$$fQuantum description of nanoscale processes in materials science$$x1
000860519 588__ $$aDataset connected to CrossRef
000860519 7001_ $$0P:(DE-Juel1)176385$$aKatayama-Yoshida, Hiroshi$$b1$$ufzj
000860519 7001_ $$0P:(DE-HGF)0$$aSato, Kazunori$$b2
000860519 7001_ $$0P:(DE-Juel1)167126$$aOgura, Masako$$b3
000860519 7001_ $$0P:(DE-Juel1)131057$$aZeller, Rudolf$$b4$$eCorresponding author$$ufzj
000860519 7001_ $$0P:(DE-Juel1)130612$$aDederichs, Peter H.$$b5$$ufzj
000860519 773__ $$0PERI:(DE-600)2042147-3$$a10.7566/JPSJ.86.114704$$gVol. 86, no. 11, p. 114704 -$$n11$$p114704 -$$tJournal of the Physical Society of Japan$$v86$$x1347-4073$$y2017
000860519 8564_ $$uhttps://juser.fz-juelich.de/record/860519/files/jpsj.86.114704.pdf$$yRestricted
000860519 8564_ $$uhttps://juser.fz-juelich.de/record/860519/files/jpsj.86.114704.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860519 909CO $$ooai:juser.fz-juelich.de:860519$$pVDB
000860519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136909$$aForschungszentrum Jülich$$b0$$kFZJ
000860519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176385$$aForschungszentrum Jülich$$b1$$kFZJ
000860519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131057$$aForschungszentrum Jülich$$b4$$kFZJ
000860519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130612$$aForschungszentrum Jülich$$b5$$kFZJ
000860519 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000860519 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS SOC JPN : 2017
000860519 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860519 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860519 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860519 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860519 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860519 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860519 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860519 920__ $$lyes
000860519 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860519 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000860519 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000860519 980__ $$ajournal
000860519 980__ $$aVDB
000860519 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860519 980__ $$aI:(DE-Juel1)PGI-2-20110106
000860519 980__ $$aI:(DE-82)080012_20140620
000860519 980__ $$aUNRESTRICTED
000860519 981__ $$aI:(DE-Juel1)PGI-1-20110106