001     860520
005     20240625085650.0
024 7 _ |a 10.1016/j.jallcom.2017.04.318
|2 doi
024 7 _ |a 0925-8388
|2 ISSN
024 7 _ |a 1873-4669
|2 ISSN
024 7 _ |a WOS:000402919400058
|2 WOS
037 _ _ |a FZJ-2019-01256
082 _ _ |a 540
100 1 _ |a Ogura, Masako
|0 P:(DE-Juel1)167126
|b 0
245 _ _ |a Structure of the high-entropy alloy Al CrFeCoNi: fcc versus bcc
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552576199_30129
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The effect of Al on the crystal structures of the high-entropy alloy AlxCrFeCoNi is discussed using first-principles electronic structure calculations. When the atomic configuration is totally random, AlxCrFeCoNi has the fcc structure. However, the total energy difference between the fcc and bcc structures decreases as the Al concentration increases. In the calculations Cr and Fe stabilize the bcc structure and Ni and Co work as fcc stabilizer in the alloys, as is observed in experiments. Moreover, the interactions between Al and transition metal elements are strongly attractive. As a result, partially disordered structures such as L12, D03 and B2, where the Al atoms are ordered and the transition metal atoms are still random, are more stable than the totally disordered phases. Especially, the energy gain by the D03 structure is large and this leads to the transition from fcc to bcc for strongly increased Al concentration.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
536 _ _ |a Quantum description of nanoscale processes in materials science (jiff02_20120501)
|0 G:(DE-Juel1)jiff02_20120501
|c jiff02_20120501
|f Quantum description of nanoscale processes in materials science
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fukushima, Tetsuya
|0 P:(DE-Juel1)136909
|b 1
700 1 _ |a Zeller, Rudolf
|0 P:(DE-Juel1)131057
|b 2
700 1 _ |a Dederichs, Peter H.
|0 P:(DE-Juel1)130612
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.jallcom.2017.04.318
|g Vol. 715, p. 454 - 459
|0 PERI:(DE-600)2012675-X
|p 454 - 459
|t Journal of alloys and compounds
|v 715
|y 2017
|x 0925-8388
856 4 _ |u https://juser.fz-juelich.de/record/860520/files/1-s2.0-S0925838817315396-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860520/files/1-s2.0-S0925838817315396-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:860520
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)136909
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131057
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130612
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ALLOY COMPD : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21