000860612 001__ 860612
000860612 005__ 20230505130534.0
000860612 0247_ $$2doi$$a10.1007/s00339-019-2465-4
000860612 0247_ $$2ISSN$$a0340-3793
000860612 0247_ $$2ISSN$$a0947-8396
000860612 0247_ $$2ISSN$$a1432-0630
000860612 0247_ $$2WOS$$aWOS:000457830500009
000860612 037__ $$aFZJ-2019-01288
000860612 082__ $$a530
000860612 1001_ $$0P:(DE-Juel1)169136$$aRatajczak, Albert$$b0$$eCorresponding author
000860612 245__ $$aMetal organic vapor phase epitaxy of $$\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}$$ Ge 1 Sb 2 Te 4 thin films on Si(111) substrate
000860612 260__ $$aNew York$$bSpringer$$c2019
000860612 3367_ $$2DRIVER$$aarticle
000860612 3367_ $$2DataCite$$aOutput Types/Journal article
000860612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596702159_32467
000860612 3367_ $$2BibTeX$$aARTICLE
000860612 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860612 3367_ $$00$$2EndNote$$aJournal Article
000860612 520__ $$aMetal organic vapor phase epitaxy was employed for the growth of homogeneous and coalesced Ge1Sb2Te4 thin films on Si(111) substrate. The influence of substrate pre-annealing on the layer morphology and composition was investigated. The annealing in H2 atmosphere in the presence of Te is important for the deposition of smooth layers. Te atoms passivate Si surface and support van der Waals epitaxy. The growth starts with van der Waals gap followed directly by Ge1Sb2Te4 layer. The morphology of epitaxial material is sensitive to the gas velocity in the reactor during growth. Measured by atomic force microscope, root mean square roughness of grown Ge1Sb2Te4 layers decreases significantly when the total gas flow in the reactor increases from 2100 to 2500 sccm. The layer composition depends strongly on the growth temperature. X-ray diffraction and energy dispersive X-ray spectroscopy confirm that the composition of the material shifts toward lower Ge content with the increase of the growth temperature. The material of the interest, its composition as well as surface morphology, exhibits high sensitivity to the growth conditions.
000860612 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000860612 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000860612 588__ $$aDataset connected to CrossRef
000860612 7001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b1
000860612 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2
000860612 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b3
000860612 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4
000860612 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-019-2465-4$$gVol. 125, no. 3, p. 163$$n3$$p163$$tApplied physics / A Materials science & processing A$$v125$$x1432-0630$$y2019
000860612 8564_ $$uhttps://juser.fz-juelich.de/record/860612/files/Ratajczak2019_Article_MetalOrganicVaporPhaseEpitaxyO.pdf$$yRestricted
000860612 8564_ $$uhttps://juser.fz-juelich.de/record/860612/files/Ratajczak2019_Article_MetalOrganicVaporPhaseEpitaxyO.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860612 909CO $$ooai:juser.fz-juelich.de:860612$$pVDB
000860612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169136$$aForschungszentrum Jülich$$b0$$kFZJ
000860612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich$$b1$$kFZJ
000860612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000860612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b3$$kFZJ
000860612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
000860612 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860612 9141_ $$y2019
000860612 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS A-MATER : 2017
000860612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860612 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860612 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860612 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860612 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860612 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860612 920__ $$lyes
000860612 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000860612 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000860612 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860612 980__ $$ajournal
000860612 980__ $$aVDB
000860612 980__ $$aI:(DE-Juel1)PGI-9-20110106
000860612 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000860612 980__ $$aI:(DE-82)080009_20140620
000860612 980__ $$aUNRESTRICTED