001     860612
005     20230505130534.0
024 7 _ |a 10.1007/s00339-019-2465-4
|2 doi
024 7 _ |a 0340-3793
|2 ISSN
024 7 _ |a 0947-8396
|2 ISSN
024 7 _ |a 1432-0630
|2 ISSN
024 7 _ |a WOS:000457830500009
|2 WOS
037 _ _ |a FZJ-2019-01288
082 _ _ |a 530
100 1 _ |a Ratajczak, Albert
|0 P:(DE-Juel1)169136
|b 0
|e Corresponding author
245 _ _ |a Metal organic vapor phase epitaxy of $$\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}$$ Ge 1 Sb 2 Te 4 thin films on Si(111) substrate
260 _ _ |a New York
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596702159_32467
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metal organic vapor phase epitaxy was employed for the growth of homogeneous and coalesced Ge1Sb2Te4 thin films on Si(111) substrate. The influence of substrate pre-annealing on the layer morphology and composition was investigated. The annealing in H2 atmosphere in the presence of Te is important for the deposition of smooth layers. Te atoms passivate Si surface and support van der Waals epitaxy. The growth starts with van der Waals gap followed directly by Ge1Sb2Te4 layer. The morphology of epitaxial material is sensitive to the gas velocity in the reactor during growth. Measured by atomic force microscope, root mean square roughness of grown Ge1Sb2Te4 layers decreases significantly when the total gas flow in the reactor increases from 2100 to 2500 sccm. The layer composition depends strongly on the growth temperature. X-ray diffraction and energy dispersive X-ray spectroscopy confirm that the composition of the material shifts toward lower Ge content with the increase of the growth temperature. The material of the interest, its composition as well as surface morphology, exhibits high sensitivity to the growth conditions.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|x 0
|f POF III
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von der Ahe, Martina
|0 P:(DE-Juel1)128650
|b 1
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 2
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 3
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 4
773 _ _ |a 10.1007/s00339-019-2465-4
|g Vol. 125, no. 3, p. 163
|0 PERI:(DE-600)1398311-8
|n 3
|p 163
|t Applied physics / A Materials science & processing A
|v 125
|y 2019
|x 1432-0630
856 4 _ |u https://juser.fz-juelich.de/record/860612/files/Ratajczak2019_Article_MetalOrganicVaporPhaseEpitaxyO.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860612/files/Ratajczak2019_Article_MetalOrganicVaporPhaseEpitaxyO.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:860612
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169136
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128650
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS A-MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21