Home > Publications database > Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach > print |
001 | 860613 | ||
005 | 20220930130206.0 | ||
024 | 7 | _ | |a 10.3390/rs11050515 |2 doi |
024 | 7 | _ | |a 2128/22024 |2 Handle |
024 | 7 | _ | |a WOS:000462544500043 |2 WOS |
024 | 7 | _ | |a altmetric:56377173 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01289 |
041 | _ | _ | |a English |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Wilke, Norman |0 P:(DE-Juel1)172705 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach |
260 | _ | _ | |a Basel |c 2019 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1554292330_3488 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Unmanned aerial vehicles (UAVs) open new opportunities in precision agriculture and phenotyping because of their flexibility and low cost. In this study, the potential of UAV imagery was evaluated to quantify lodging percentage and lodging severity of barley using structure from motion (SfM) techniques. Traditionally, lodging quantification is based on time-consuming manual field observations. Our UAV-based approach makes use of a quantitative threshold to determine lodging percentage in a first step. The derived lodging estimates showed a very high correlation to reference data (R2 = 0.96, root mean square error (RMSE) = 7.66%) when applied to breeding trials, which could also be confirmed under realistic farming conditions. As a second step, an approach was developed that allows the assessment of lodging severity, information that is important to estimate yield impairment, which also takes the intensity of lodging events into account. Both parameters were tested on three ground sample distances. The lowest spatial resolution acquired from the highest flight altitude (100 m) still led to high accuracy, which increases the practicability of the method for large areas. Our new lodging assessment procedure can be used for insurance applications, precision farming, and selecting for genetic lines with greater lodging resistance in breeding research. |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
536 | _ | _ | |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A) |0 G:(DE-Juel1)BMBF-031A053A |c BMBF-031A053A |f Deutsches Pflanzen Phänotypisierungsnetzwerk |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Siegmann, Bastian |0 P:(DE-Juel1)172711 |b 1 |u fzj |
700 | 1 | _ | |a Klingbeil, Lasse |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Burkart, Andreas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kraska, Thorsten |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Muller, Onno |0 P:(DE-Juel1)161185 |b 5 |u fzj |
700 | 1 | _ | |a van Doorn, Anna |0 P:(DE-Juel1)171542 |b 6 |u fzj |
700 | 1 | _ | |a Heinemann, Sascha |0 P:(DE-Juel1)171804 |b 7 |u fzj |
700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 8 |
773 | _ | _ | |a 10.3390/rs11050515 |g Vol. 11, no. 5, p. 515 - |0 PERI:(DE-600)2513863-7 |n 5 |p 515 - |t Remote sensing |v 11 |y 2019 |x 2072-4292 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860613/files/English_Editing_Invoice_MDPI_english-7888_188.93EUR.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860613/files/Invoice_MDPI_remotesensing.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/860613/files/English_Editing_Invoice_MDPI_english-7888_188.93EUR.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/860613/files/Invoice_MDPI_remotesensing.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/860613/files/remotesensing-11-00515.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/860613/files/remotesensing-11-00515.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:860613 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172705 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172711 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)161185 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)171542 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)171804 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129388 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REMOTE SENS-BASEL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|