001     860613
005     20220930130206.0
024 7 _ |a 10.3390/rs11050515
|2 doi
024 7 _ |a 2128/22024
|2 Handle
024 7 _ |a WOS:000462544500043
|2 WOS
024 7 _ |a altmetric:56377173
|2 altmetric
037 _ _ |a FZJ-2019-01289
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Wilke, Norman
|0 P:(DE-Juel1)172705
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1554292330_3488
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Unmanned aerial vehicles (UAVs) open new opportunities in precision agriculture and phenotyping because of their flexibility and low cost. In this study, the potential of UAV imagery was evaluated to quantify lodging percentage and lodging severity of barley using structure from motion (SfM) techniques. Traditionally, lodging quantification is based on time-consuming manual field observations. Our UAV-based approach makes use of a quantitative threshold to determine lodging percentage in a first step. The derived lodging estimates showed a very high correlation to reference data (R2 = 0.96, root mean square error (RMSE) = 7.66%) when applied to breeding trials, which could also be confirmed under realistic farming conditions. As a second step, an approach was developed that allows the assessment of lodging severity, information that is important to estimate yield impairment, which also takes the intensity of lodging events into account. Both parameters were tested on three ground sample distances. The lowest spatial resolution acquired from the highest flight altitude (100 m) still led to high accuracy, which increases the practicability of the method for large areas. Our new lodging assessment procedure can be used for insurance applications, precision farming, and selecting for genetic lines with greater lodging resistance in breeding research.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 1
|u fzj
700 1 _ |a Klingbeil, Lasse
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Burkart, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kraska, Thorsten
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 5
|u fzj
700 1 _ |a van Doorn, Anna
|0 P:(DE-Juel1)171542
|b 6
|u fzj
700 1 _ |a Heinemann, Sascha
|0 P:(DE-Juel1)171804
|b 7
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
773 _ _ |a 10.3390/rs11050515
|g Vol. 11, no. 5, p. 515 -
|0 PERI:(DE-600)2513863-7
|n 5
|p 515 -
|t Remote sensing
|v 11
|y 2019
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/860613/files/English_Editing_Invoice_MDPI_english-7888_188.93EUR.pdf
856 4 _ |u https://juser.fz-juelich.de/record/860613/files/Invoice_MDPI_remotesensing.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860613/files/English_Editing_Invoice_MDPI_english-7888_188.93EUR.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860613/files/Invoice_MDPI_remotesensing.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/860613/files/remotesensing-11-00515.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/860613/files/remotesensing-11-00515.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:860613
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171804
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21