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Abstract

The hippocampus displays a complex organization and function that is perturbed in many neuropathologies. Histological

work revealed a complex arrangement of subfields along the medial–lateral and the ventral–dorsal dimension, which

contrasts with the anterior–posterior functional differentiation. The variety of maps has raised the need for an integrative

multimodal view. We applied connectivity-based parcellation to 1) intrinsic connectivity 2) task-based connectivity, and

3) structural covariance, as complementary windows into structural and functional differentiation of the hippocampus.

Strikingly, while functional properties (i.e., intrinsic and task-based) revealed similar partitions dominated by an anterior–

posterior organization, structural covariance exhibited a hybrid pattern reflecting both functional and cytoarchitectonic

subdivision. Capitalizing on the consistency of functional parcellations, we defined robust functional maps at different

levels of partitions, which are openly available for the scientific community. Our functional maps demonstrated a head–

body and tail partition, subdivided along the anterior–posterior and medial–lateral axis. Behavioral profiling of these fine

partitions based on activation data indicated an emotion–cognition gradient along the anterior–posterior axis and

additionally suggested a self-world-centric gradient supporting the role of the hippocampus in the construction of abstract

representations for spatial navigation and episodic memory.
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Introduction

The hippocampus is involved in a variety of tasks ranging from

memory, learning, navigation, and emotion (Moser and Moser

1998; Prince et al. 2005; Fanselow and Dong 2010; Poppenk et al.

2013; Strange et al. 2014). However, an integrative conceptual

framework is currently lacking to account for this diversity of

behavioral findings. To progress in that direction, first, a better

understanding of the hippocampus’ organization and function

is crucially needed to shed light on its role in a range of behav-

ioral aspects and second, a common generic map would be

highly useful to further support cross-studies comparison and

integration.

As far, 2 opposing organizational patterns were introduced

in the past. The first mapping based on cytoarchitecture has

evidenced a subdivision into subfields (CA1-4, dentate gyrus,

subiculum) along the medial–lateral and ventro–dorsal axes as
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illustrated in Figure 1 (Amunts et al. 2005). In parallel to this

organization, an organization into subregions (head, body, tail)

along the anterior–posterior (longitudinal) axis (Lepage et al. 1998;

Moser and Moser 1998; Fanselow and Dong 2010; Poppenk et al.

2013; Strange, et al. 2014) commonly emerged across a variety of

in vivo approaches such as electrophysiology (Komorowski et al.

2013) and connectivity-based parcellation (CBP) (see Fig. 1, Robinson

et al. 2015; Chase et al. 2015).

In line with the histological work and despite evidence of

functional anterior–posterior differences, many in vivo and

ex vivo studies in the human hippocampus used a priori seg-

mentation into subfields based on either an automated or a

manually delineation in the anatomical MRI scans (see Fig. 1;

Adler et al. 2014, 2018; de Flores et al. 2015). Such segmentation

into subfields has the advantage of using the histological

“ground truth” as an a priori representation but has the disad-

vantage of neglecting higher order features, such as the rich

long-range connectivity of the hippocampus, which contributes

to its functional organization. Thus, the knowledge from this

one-sided perspective should be complemented by a CBP

approach, which now allows the combination of different MRI

measurements within the whole hippocampus hence poten-

tially probing different aspects of its organization.

CBP is an in vivo brain-mapping method that characterizes

the organization of the brain based on connectivity estimates,

usually derived from MRI (Eickhoff et al. 2018). CBP can be

applied on any estimates of connectivity from MRI data (func-

tional or structural) with different types of connectivity mea-

surements being usually referred to as different CBP

modalities. Across the previous years, evidence have been

brought that CBP can capture organizational aspects that were

previously revealed by tracing studies, as well as by histological

work (Behrens et al. 2003; Lambert et al. 2017). Additionally,

CBP was shown to be sensitive to functional distinction, for

example, replicating the supplementary motor area (SMA) and

pre-SMA differentiation evidenced by functional signal during

task (Johansen-Berg et al. 2004). Hence this approach appears

to identify regional differentiation supported by local micro-

architecture, connectivity and local functional signal to some

extent.

In the present study, we focused on the functional connec-

tivity between hippocampus’ voxels and all gray matter voxels.

In other words, we examined long-range (whole brain) connec-

tivity by computing for every hippocampal voxel its individual

connectivity fingerprint with all other gray matter voxels.

Based on the (dis-)similarity of connectivity fingerprints, the

voxels were clustered into either same or different partitions.

CBP has the advantage to be model-free and unsupervised

hence offering maps that optimally represent the data on

hand. It has already been used in previous studies to examine

hippocampal organization. Nevertheless, previous work

focused mainly on a single CBP modality, either structural con-

nectivity (Adnan et al. 2016) or meta-analytic connectivity

modeling (MACM) (Chase et al. 2015; Robinson et al. 2015, 2016).

Examining structural connectivity, Adnan et al. (2016) proposed

a bipartite anterior–posterior subdivision of the hippocampus,

which contrasted with MACM parcellations revealing a more

detailed architecture. This latter modality yielded a 3-part orga-

nization for the left hippocampus and a 5-partite structure for

the right hippocampus along the anterior–posterior axis

Figure 1. Hippocampal mapping based on histology, structural MRI segmentation, and CBP method. (Images reproduced with permission from publishers.)
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(Robinson et al. 2015, 2016), while the subiculum subfield was

subdivided into 5 modules (Chase et al. 2015). In sum, unimodal

CBP has thus far provided evidence for an anterior–posterior

organization of the hippocampus, but at different levels of par-

tition across studies and even across hemispheres. This variety

of partition schemes hinders a deep investigation of the func-

tional relevance of the anterior–posterior differentiation and

also complicates the study of hippocampus dysfunction in

brain pathology.

In this latter perspective, a common set of maps of the hip-

pocampus for MRI investigation would be highly useful. Across

the previous years, one major avenue of neuroimaging research

of brain pathology has developed from phenotype (such as cog-

nitive performance or symptoms) prediction approaches based

on multivariate pattern analyses applied to large-scale clinical

datasets (Zhang et al. 2016). In this promising avenue of

research, individual voxels have to be compressed into homo-

geneous subregions in which the measurements (e.g., fMRI sig-

nal) can be summarized. This compression is most of the time

required not only for computational purposes but also for post

hoc investigations of subregions contributing to the predic-

tions. In this framework, the compression should be based on

robustly defined maps that would represent a universal frame-

work for comparison and integration of results across studies.

In this study, we investigated hippocampal functional orga-

nization using a multimodal CBP approach to generate robust

functional hippocampal maps based on hippocampus– whole-

brain connectivity profiles (Eickhoff et al. 2015, 2018). To do so,

we focused on 2 purely functional modalities: MACM-CBP and

resting-state functional connectivity (RSFC-CBP). Despite show-

ing convergence (Reid et al. 2016) and being conceptually

related, these 2 modalities are based on very different types of

data and methods. MACM reflects functional organization dur-

ing task and is computed from whole-brain coactivation peaks

in activation databases such as BrainMap. For each hippocam-

pal voxel, we obtained a whole-brain coactivation profile. RSFC,

on the other hand, reflects the functional connectivity esti-

mated in the unconstrained function of the brain and is com-

puted at the subject level. For each individual hippocampal

voxel, we obtained its functional connectivity profile to all the

other gray matter voxels in the brain. RSFC is based on

resting-state functional MRI (RS-fMRI), which is known to be

prone to noise due to various artifacts (Van Dijk et al. 2012;

Satterthwaite et al. 2013, 2017; Power et al. 2015), but the

choice of an optimal denoising strategy has remained rela-

tively unexplored in the particular framework of CBP. For that

reason, as a preliminary step in the present study, we per-

formed a systematic evaluation of different denoising meth-

ods in order to favor stable partitions with high biological

validity for RSFC-CBP. We aimed to generate a functional sub-

division of the hippocampus that would be stable across sub-

jects and CBP modalities offering a representation that would

be optimal for any type of functional signal (such as task-

based fMRI activations, RS-fMRI or PET).

Nevertheless, to complement this purely functional parcel-

lation and to start building a scientific bridge with previous

structural mapping modalities, we additionally examined the

subdivision of the hippocampus based on structural covariance

(SC-CBP), which represents on the group-level covariation of

hippocampal voxels with all the other brain voxels. SC stands

at an ambiguous place in the mapping approaches. On the one

hand, it is assumed to reflect functional dependencies between

regions through synchronous firing of neurons reflecting func-

tional neuroplasticity (Alexander-Bloch et al. 2013; Evans 2013).

Accordingly, SC and RSFC are conceptually related to each other

(Kotkowski et al. 2018), as indicated by structural changes through

function (Seeley et al. 2009), although both are technically 2 dis-

tinct modalities. However, on the other hand, SC is based on

structural changes (Mechelli et al. 2005; Alexander-Bloch et al.

2013) and thus should be influenced by the underlying structural

organization like gene expression during neurodevelopment and

direct structural connectivity through monosynaptic connec-

tion as indicated in a recent rodent study (Yee et al. 2017). In

sum, SC is assumed to reflect common influences of certain

factors on microstructure be it synaptogenesis based on

functional synchronous firing, connectivity as direct mono-

synaptic connection, or gene expression in synapses develop-

ment. Therefore, we expected that SC-CBP would to some extent

confirm functional organization, and additionally, provide ana-

tomical information conveyed in brain structure to complement

our understanding of the hippocampal functional topography

and provide an alternative map for studies capitalizing on struc-

tural MRI data.

Our final objective was to characterize the obtained cross-

modal functional maps in terms of associated behavioral func-

tions via a quantitative approach of activation studies (e.g.,

using the BrainMap or NeuroSynth databases). Importantly, our

conceptual objective here was not to identify specific behav-

ioral functions segregated into different subregions of the hip-

pocampus but rather to assess the functional relevance and

integration of the organization pattern in terms of cognitive

information processing. Several hypotheses have been pro-

posed in the past to describe the anterior–posterior differentia-

tion in terms of psychological functions. But these hypotheses

usually pertain to a specific psychological or neuroscientific

research domain and hence could not account for pluripotency

of the engagement of the hippocampus across psychological

domains. As far, 2 main hypotheses derived from psychological

ontologies have been proposed in that regard: an emotional–

cognitive dimension (Moser and Moser 1998) and an encoding–

retrieval dimension (Lepage et al. 1998; Prince et al. 2005; Kim

2015). Further investigations have proposed a novelty–familiar-

ity (Strange et al. 1999) and an imagination–perception differen-

tiation along the anterior–posterior axis (Zeidman and Maguire

2016). However, a common framework accounting for the rele-

vance of the organization of the hippocampus across domains

of human behavior is still lacking. The current study aimed to

fill this gap by performing behavioral profiling (Genon, Reid,

Langner et al. 2018) of hippocampus subregions using thou-

sands of activation studies collected across 2 different data-

bases using different behavioral taxonomies. Such a quantitative

approach offers an overview, which can be used as a starting

point to build an integrative theory.

Thus, the objectives of the present study were 2-fold 1) a

conceptual objective of understanding hippocampal organiza-

tion as revealed across different neurobiological properties and

its relevance in terms of cognitive information processing and

2) a mapping objective to provide robust and fine-grained parti-

tions of the hippocampus. While current high-level parcella-

tions (Glasser et al. 2016; Schaefer et al. 2017) have focused on

the cerebral cortex they neglected crucial subcortical struc-

tures. A consensual robust map of the bilateral hippocampus is

still missing which in turn can help to study its structure and

function across the lifespan as well as in disease. Our study

was designed to offer such partitions and their patterns of

associations with behavioral functions. These resources are

openly available to the scientific community via ANIMA data-

base (http://anima.fz-juelich.de/).
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Materials and Methods

The bilateral hippocampi were parcellated using different con-

nectivity modalities. Task-based connectivity was examined

with MACM performed on reported activation peaks across

paradigms in the BrainMap database. RSFC-CBP was performed

at the subject level for a sample of participants from the

Human Connectome Project (HCP), while SC-CBP was per-

formed at the group level using the structural MRI data of the

same HCP sample (Smith et al. 2013; Ugurbil et al. 2013). The

main methodological differences between these 2 CBP modali-

ties are illustrated in Supplemental Material Methods I.5.

After computing parcellations for each modality, we estab-

lished a functional map of the hippocampus by merging the

functional parcellations (i.e., RSFC and MACM, that showed the

highest convergence) into one hippocampal map, hence repre-

senting a cross-modal consensus map. Finally, we character-

ized our cross-modal consensus map at high granularity with

regard to behavioral functions using BrainMap and NeuroSynth

databases.

Volume of Interest

We defined our VOI as a consortium of the cytoarchitectonic

maps, available in the SPM Anatomy Toolbox 2.0 (Eickhoff et al.

2005), and the macro anatomically-defined Harvard-Oxford

Structural Probability Atlas (http://neuro.imm.dtu.dk/wiki/

Harvard-Oxford_Atlas) (Desikan et al. 2006). The hippocampal

formation included the following subfields: CA1–3, dentate

gyrus, and subiculum. The total number of voxels in a 2mm ×

2mm × 2mm space in the right hippocampus was 865 (6920mm3)

and that of the left hippocampus was 831 (6648mm3) voxels.

Sample

The sample was obtained from the longitudinal study of the

HCP (Van Essen and Ugurbil 2012) representing one of the best

openly accessible MRI datasets. We included unrelated partici-

pants in order to avoid heritability effects. The sample con-

sisted of n = 323 young adults (age: 22–37 years, mean age: 28.2

years, 50.7% females). All participants gave their written state-

ment of agreement, and the analyses of the data were approved

by the ethical committee of the Heinrich Heine University

Düsseldorf.

MRI Measurements

Structural MRI

All scans were acquired on a 3 T MRI scanner of Siemens Skyra

(Siemens AG, Erlangen, Germany) with a 32-channel coil (Van

Essen and Ugurbil 2012). The 3D structural T1-weighted MRI

scans were performed with a MPRAGE sequence (256 sagittal

slices in a single slab, TR = 2400ms, TE = 2.14ms, TI = 1000ms,

FoV = 224 × 224mm, flip angle = 8◦, voxel size = 0.7 × 0.7 ×

0.7mm3). Preprocessing of the MRI data was performed with

SPM8 (Statistical Parametric Mapping) and the VBM8 toolbox,

running on Matlab R2014a. Structural images were normalized

with the DARTEL algorithm to the ICBM-152 template using

both affine and nonlinear spatial normalization. Images were

bias-field corrected and segmented into gray matter, white

matter (WM), and cerebrospinal fluid (CSF) tissues. The gray

matter segments were then modulated for nonlinear transfor-

mations only and subsequently smoothed with an isotropic

Gaussian kernel (full-width-half-maximum = 8).

Resting-state Functional MRI

The acquisition of resting-state fMRI with opposite phase

encoding directions (L/R and R/L) was performed with an EPI

sequence for a duration of 30min (eyes open and fixated on a

hair cross), 72 slices covering the whole brain (TR = 720ms,

using a multiband factor of 8, TE = 33ms, FoV = 208 × 180mm,

flip angle = 52°, voxel resolution = 2 × 2 × 2mm3; Smith et al.

2013; Ugurbil et al. 2013). During preprocessing, we corrected

for movements by affine 2-pass registration and aligned the

images to the first volume and to the mean of the volumes.

Variance explained by 6 motion parameters from the realign-

ment and their first derivatives were regressed out. Spatial nor-

malization to the Montreal Neurological Institute (MNI) was

carried out for the average EPI scans for each subject using the

unified segmentation approach (Ashburner and Friston 2005).

We applied a band-pass filter with the cut-off frequencies of

0.01 and 0.08 Hz. The images were smoothed with the isotropic

Gaussian kernel (full-width-half-maximum = 5).

Connectivity-based Parcellation

Parcellation Based on Structural Covariance (SC-CBP)

For each subject, structural covariance was measured by com-

puting the Pearson’s correlation coefficient between gray mat-

ter volume values of the hippocampus’ VOI voxels (seed voxels)

and all other brain gray matter voxels across the whole sample.

This procedure yielded a seed voxels by target voxels connec-

tivity matrix at the group level that was then used for cluster-

ing (see Supplemental material I.5 Fig. 4).

Parcellation Based on Resting-state Functional Connectivity

(RSFC-CBP)

Resting-state functional connectivity between 2 brain regions

was estimated by computing Pearson’s correlation between

time series of blood oxygen-level-dependent signal (BOLD) at

the subject level (Biswal et al. 1995; Buckner et al. 2013). For

each seed voxel in the VOI, we calculated the correlation with

every other gray matter voxels of the brain (see Supplemental

Material I.5 Fig. 4). Correlation values were then standardized

using the Fisher’s Z-transformation.

Temporal MRI preprocessing. The goal of denoising is to

remove or at least to reduce the contribution of any artifacts

and confounds that contaminate neurally generated BOLD sig-

nal. Noise in RSFC can result from scanner artifacts (Ojemann

et al. 1997), subject movement (Van Dijk et al. 2012;

Satterthwaite et al. 2013; Power et al. 2014), and physiological

processes (Birn et al. 2006). Standard denoising approaches aim

to regress out variance that is driven by noise in the measured

BOLD signal. One simple approach to do so relies on the calcu-

lation of global signal or/and signal in 2 specific nongray matter

tissues (i.e., WM and CSF), which are assumed to reflect arti-

facts. An alternative approach capitalizes on machine-learning

techniques (e.g., FIX) to automatically identify potential noise

in the data. With these approaches, the part of variance related

to noise is typically first estimated and then regressed out from

time series. Several variants have been developed over the pre-

vious years and we described in the following the most com-

monly used strategies.

Global signal regression. In global signal regression (GSR), the

mean fMRI signal across all brain voxels is regressed out

(Desjardins et al. 2001; Macey et al. 2004). The underlying axiom

is that any fluctuations that are measured globally are not

attributable to neural activity but have physiological or

mechanical origin (Wise et al. 2004; Birn et al. 2006; Bianciardi

4598 Cerebral Cortex, 2019, Vol. 29, No. 11
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et al. 2009; Caballero-Gaudes and Reynolds 2017). Although it is

unclear what exactly is reflected in the global signal and to

what extent signal or nuisance is regressed out, it is still widely

used. In this context of scientific uncertainty, the consequences

of GSR on RSFC should be considered.

WM–CSF signal regression. Another alternative is to estimate

nuisance regressors from WM and CSF signal (Weissenbacher

et al. 2009; Jo et al. 2010, 2013; Anderson et al. 2011; Power et al.

2012; Hallquist et al. 2013; Yan et al. 2013). The signal’s fluctua-

tions in these parts of the brain are assumed to reflect drifts

mainly caused by cardiac and respiratory effects (Dagli et al.

1999; Windischberger et al. 2002; de Munck et al. 2008; Van Dijk

et al. 2010). To measure the mean signal across these regions,

we created subject-specific masks by coregistering the WM and

CSF templates to each individuals’ space and subsequently,

regressed out the mean signal computed within these masks.

Note that the subject-specific templates were eroded in order

to remove voxels on the edge of the mask that relate to gray

matter and do not contain pure WM/CSF tissue (Jo et al. 2010;

Caballero-Gaudes and Reynolds 2017).

FMRIB’s ICA-based X-noiseifier. FMRIB’s ICA-based X-noiseifier

(FIX) is based on a machine-learning approach, in which RS-

fMRI signal has been decomposed into components of neural

and non-neural sources by applying an independent compo-

nent analysis (ICA) method (Beckmann and Smith 2004; Cole

et al. 2010; Salimi-Khorshidi et al. 2014). FIX classifies the ICA

components into relevant signal and noise-related components

(Cole et al. 2010; Salimi-Khorshidi et al. 2014). We used the

default classifier trained on a standard fMRI dataset, which has

been shown to achieve 95% accuracy (Salimi-Khorshidi et al.

2014). For each participant, spatial ICA was performed using

FSL’s MELODIC toolbox (Beckmann and Smith 2004) and subse-

quently noise-variance components were regressed out.

In this study, we evaluated the denoising techniques both

individually or in combination as recently suggested by Burgess

et al. (2016) (see Supplemental Material I.4 methods).

We investigated 6 different strategies:

• Standard motion regression with 24 regressors without addi-

tional explicit denoising, termed as “no denoising” emphasiz-

ing no additional transformations.

• Regression of the averaged fMRI signal across all voxels of

the brain (GSR).

• Regression of WM and CSF-related variance (WM/CSF).

• Neutralization of “bad” components of fMRI signal decom-

posed by ICA (FIX).

• A combination of FIX and GSR regression (FIX + GSR).

• A combination of FIX and WM/CSF regression (FIX + WM/CSF).

Parcellation Based on Meta-analytic Connectivity Modeling

(MACM-CBP)

From a computational point of view, MACM substantially differs

from the aforementioned approaches since connectivity is not

computed from collected MRI data as done for RSFC and SC but

meta-analytically across activation foci of neuroimaging studies

and paradigms archived in the BrainMap database (Laird et al.

2011) (http://www.brainmap.org). All experiments in BrainMap

that were associated with each seed voxel or in the immediate

vicinity of activation were considered. To account for spatial

uncertainty, a spatial filter was systematically varied by including

the closest 20–200 experiments in steps of 5 (for more details, see

Clos et al. 2013, 2014; Genon et al. 2017; Genon, Reid, Li et al.

2018). For each seed voxel, a meta-analytical coactivation

likelihood profile for every other brain voxel given each of the 25

filter sizes was computed with revised ALE algorithm (Eickhoff

et al. 2012). The final CBP analysis was performed in the filter

range of 100–148 experiments for the right hippocampus and in

the filter range of 82–130 for the left hippocampus. An optimal fil-

ter range was defined based on the consistency of each voxels’

cluster assignment across all the filter sizes (see Clos et al. 2013;

Clos et al. 2013; Chase et al. 2015; Genon et al. 2017) (see in

Supplementary Methods I.3).

Clustering Method

In line with previous studies, we used k-means (using MATLAB

software 2014a) clustering, which showed good agreement with

spectral clustering and outperformed hierarchical clustering

(Arslan et al. 2018). The repetition number was set to 500, which

almost doubled the recommended number of 256 repetitions

(Nanetti et al. 2009), and the iteration number was set to 255. We

examined 6 levels of granularity (levels of partitions) ranging

from k = 2 to 7 since previous work has reported stable cluster

solutions at different level of partitions (2, 3, and 5 (Chase et al.

2015; Robinson et al. 2015, 2016; Adnan et al. 2016)). The cluster-

ing was performed at the subject level for RSFC and at the

experiments range (filter range) for MACM, while it was per-

formed at the group level with average across bootstrap resam-

pling for SC. Modality-specific and group-specific parcellations

were achieved by assigning the hippocampal voxels to its most

frequent cluster’s label (i.e., by using the mode) across subjects,

filter sizes, and bootstrapping samples.

Measurement of Stability and Consistency of

Parcellations

In this work, we estimated stability and consistency of the par-

titions yielded by RSFC-CBP since this modality is particularly

challenging in terms of its sensitivity to noise, interindividual

variability (Mueller et al. 2013) and its dynamic nature

(Hutchison et al. 2013). We examined both criteria in this CBP

framework, but emphasized consistency over stability, as we

aimed for biological validity in addition to stability by capturing

convergent organizational characteristics across CBP modali-

ties. In line with previous study (Varikuti et al. 2017), we con-

sidered the possibility that high stability within RSFC could be

influenced by “structured noise,” which when regressed out

might result in apparently lower stability but preserving biolog-

ical relevance or even enhancing it.

We used 2 procedures in order to cross-validate our findings:

1) split-half (Strother et al. 2002; LaConte et al. 2003) to estimate

the stability within a CBP modality (i.e., RSFC) and 2) bootstrap

resampling with replacement to assess consistency between CBP

modalities (i.e., RFSC vs. MACM) (Efron 1979; Bellec et al. 2010).

In contrast to previous studies, we here assumed that multi-

ple partitions at different granularities might be valid represen-

tations of the hippocampus organization, but at different

levels. Accordingly, we focused on split-half and bootstrap

resampling instead of internal validity criteria such as the sil-

houette value or the percentage of misclassified voxels as these

latter metrics probe optimal data representation within the

specific modality at hand, while we here aimed for stability

within and reproducibility across modalities. Stability was esti-

mated by splitting the sample into halves 10 000 times. The

similarity between the 2 halves was examined by computing

the Adjusted Rand Index (ARI) between the 2 split partitions. To

assess consistency, we generated 10 000 bootstrap samples for
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each modality and compared these samples between CBP

modalities using the ARI (RSFC vs. MACM, RSFC vs. SC, MACM

vs. SC). An ARI value of 1 indicates that the clusterings are

identical and a value of 0 suggests that the clusterings are not

similar to each other, whereas negative values indicate a dis-

similarity of clusterings higher than chance (see Supplemental

Material I.6 methods for detailed information).

Evaluating Denoising Performance

To better understand the actual effect of denoising strategies on

the stability and consistency of RSFC-CBP partitions, we investi-

gated the effect of denoising on seed voxels’ time course similar-

ity and on connectivity profile dissimilarity. We assumed that

structured noise influences the BOLD response in the measured

time series in such a way that the voxels become more artificially

similar (higher time series similarity) and show higher similarity

in their connectivity profiles. Accordingly, we can expect that a

denoising method, which reduced structured noise successfully,

will decrease time series similarity and increase dissimilarity of

the connectivity fingerprint. Since this latter marker directly

drives the clustering pattern, its sensitivity to denoising is cru-

cially relevant in the CBP application perspective. We could

indeed expect that efficient denoising would to some degree

enhance voxels’ dissimilarity facilitating the assignment of voxels

to clusters. We therefore first examined voxels similarity regard-

ing their time series as measured by correlations of the time

series (Pearson’s correlation), but we also examined the dissimi-

larity of the seed voxels regarding their pattern of connectivity

with all other brain gray matter voxels by computing the

Euclidean distance between seed voxels’ connectivity fingerprint.

Consensus Clustering

In order to create a cross-modal and stable map of the hippo-

campus from functional modalities, we used the bootstrap

resampling method (Bellec et al. 2010). The basic idea was to

simulate the replication process of parcellation a large number

of times to preserve stable features and to reduce the occur-

rence of unlikely or unstable individual patterns (Bellec et al.

2010). After having created 10 000 bootstrap samples containing

a matrix with all seed voxels and their cluster’ labels (assigning

each voxel to a cluster for each modality), we pooled these

samples. After pooling, we identified for each seed voxel the

most frequent assignment to a cluster by computing the mode.

This procedure allowed each modality to be represented in the

same regard independent of group or filter size, but only the

most stable partition across both modalities was retained.

Accordingly, if one modality provides unstable partitions,

which is particularly likely for RSFC-CBP, the stable partitions

from the other modality (here MACM) will determine the final

clustering. Thus, this procedure promotes a final general par-

cellation, which is both, functionally cross-modal, and stable.

Cluster Characterization with BrainMap and

NeuroSynth Databases

To characterize the clusters of our cross-modal consensus par-

cellation behaviorally, we used 2 different databases, BrainMap

(http://www.brainmap.org/) and NeuroSynth (http://neurosynth.

org/). Both databases are complementary so that we expect their

combination to provide novel insights into the behavioral asso-

ciation and the profile of a brain region (Genon, Reid, Langner

et al. 2018). Furthermore, using both databases circumvents a

circularity limitation (see Supplementary Methods I.2). In the

BrainMap protocol, each activation peak has been individually

labeled according to a predefined taxonomy of behavioral

domains such as cognition.memory.working (see (Genon et al.

2017). Behavioral profiling was performed with a reverse infer-

ence approach (Genon, Reid, Langner et al. 2018), which identi-

fies the posterior probability P(Task|Activation), that is, the

probability of task given activation in that cluster.

In contrast, studies in NeuroSynth were labeled according to

terms occurrence in the paper by using a text-mining approach so

that behavioral associations were determined by the terms used in

the corresponding article text (Yarkoni et al. 2011). This automated

strategy resulted in the inclusion of 11 406 studies (tripled the num-

ber of archived studies in BrainMap) but can suffer from a lack of

behavioral precision. We also used the reverse inference approach

with NeuroSynth, that is, P(Term|Activation). The decoding with

BrainMap was region of interest (ROI)-based, whereas it was

coordinate-based with NeuroSynth requiring the usage of centroid

coordinates of each cluster in MNI152 space (see Supplementary

Methods I.7, Table 1). The lexical meta-analysis approach of

NeuroSynth required decision criteria for selecting functional asso-

ciated terms so that we excluded all noncontent words (e.g.,

“addressed,” “abstract,” or “reliable”) and all brain terms that did

not refer to function (e.g., “hippocampus” and “middle temporal

lobe”). Additionally, we pooled terms with the same phonological

root (e.g., “memory” was used as a generic term for “memories”).

All terms that reached a z-score higher than zero were included.

Results

To optimize first the reliability of RSFC-CBP, we examined the

stability of its yielded partitions dependent on the application

of different denoising strategies. After having identified the

most reliable denoising method for RSFC, we investigated hip-

pocampal organization across CBP modalities to determine

consistency between modalities and levels of partition in order

to establish a stable cross-modal functional map, which we

characterized behaviorally in the last step.

Stable RSFC Parcellations as a Function of Denoising

We measured stability within RSFC-CBP with split-half cross-

validation and computed a 2-way ANOVA with denoising as

one factor (no denoising, GSR, WM/CSF, FIX, FIX + GSR vs. FIX +

WM/CSF), levels of partition as a second factor (k = 2–7), and

ARI as a dependent variable.

The analysis showed that the most robust RSFC parcellation

was achieved when using FIX + WM/CSF (M = 0.82 ARI, SE =

0.03), GSR (M = 0.82 ARI, SE = 0.03), or WM/CSF regression (M =

0.81 ARI, SE = 0.04). The least stable parcellation was achieved

when using FIX only (M = 0.76 ARI, SE = 0.005); main effect

denoising [F(5, 719 999) = 60 220, P < 0.0001] (see Fig. 2A).

The main effect of partition levels was also significant [F(5,

719 999) = 7377.6, P < 0.0001] demonstrating highest stability for

6 clusters (M = 0.81 ARI, SE = 0.03), followed by 7 clusters (M =

0.81 ARI, SE = 0.03). The ANOVA yielded also a significant inter-

action effect between denoising and levels of partition, [F(25,

719 999) = 6812.48, P < 0.0001] (see Fig. 2D). All comparisons

between denoising methods and between levels of partition

were significant according to a post hoc Bonferroni-corrected

analysis (P < 0.001).

However, the small magnitude of the differences between

denoising approaches suggested that, overall, they all offered

high stability. In the following section, we further investigated
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the effect of denoising at the voxel level to better understand

how different methods influence voxels’ properties and thereby

the stability of the clustering.

Effects of Denoising on Voxels’ Time Course Similarity

and Connectivity Profile Dissimilarity

We computed 2 separated ANOVAs in order to examine the

effect of variance regression performed with denoising on each

type of voxel measure separately: voxels’ time course similarity

and voxels’ connectivity profile dissimilarity.

The ANOVA with averaged seed voxels’ time course similar-

ity as a dependent variable revealed a significant main effect

denoising [F(5, 4 311 269) = 78 078.56, P < 0.0001], demonstrating

a decrease in time course similarity for denoised data. Post hoc

Bonferroni-corrected multiple comparisons revealed no signifi-

cant difference between FIX + GSR and FIX + WM/CSF regres-

sion (P = 0.40), but all the other comparisons were significant

(P < 0.0001). The combination of a model-based (FIX) and

model-free (GSR, WM/CSF) denoising strategy resulted in highly

reduced seed voxels’ time course similarity compared with

other techniques (Fig. 2B).

The second ANOVA with averaged seed voxels’ connectivity

profile dissimilarity as a dependent variable revealed an

increase in dissimilarity of seed voxels with every additional

denoising technique [significant main effect denoising: F(5, 4

Figure 2. The effect of denoising on RSFC-CBP and on voxel functional properties. (A) Most stable hippocampal parcellations across all levels of partition (k = 2–7)

were obtained with FIX + WM/CSF, GSR, and WM/CSF regression as denoising approaches. Bars indicate mean ARI (±standard errors). Independent of denoising tech-

nique the highest stability was acquired for 6 clusters. All comparisons were statistically significant. (B) Seed voxels’ time course similarity was reduced after the

application of denoising. No significant difference was observed between FIX + GSR and FIX + WM/CSF, whereas all the other comparisons were significant. (C)

Denoising resulted in an increase in seed voxels’ dissimilarity in comparison to uncleaned data. FIX-related strategies demonstrated the strongest effect of connectiv-

ity profile dissimilarity. (D) FIX + WM/CSF showed the highest stability across all levels of partition (k = 2–7) compared with other denoising techniques. Mean ARI

(±standard errors). All comparisons were statistically significant.
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311 269) = 113 132.16, P < 0.0001] (Fig. 2C). Our results showed

that following denoising, seed voxels’ connectivity profiles

were more discriminable and especially, FIX + WM/CSF led to

the highest dissimilarity between seed voxels’ connectivity pro-

files. All post hoc Bonferroni-corrected comparisons were sig-

nificant (P < 0.0001).

Thus, overall our analyses supported the use of FIX + WM/

CSF as a denoising strategy and accordingly this procedure was

retained for the following multimodal functional parcellation.

Robust Levels of Subdivisions Across CBP Modalities

After defining the optimal denoising strategy (FIX + WM/CSF)

from the voxels’ properties, as well as from the parcellation’s

stability perspective, we examined which level of partition, in

other words, granularity, promotes consistency across CBP

modalities. We focused on the consistency measure instead of

stability, since we aimed to promote biological validity esti-

mated through comparisons across modalities. To examine

consistency across partition’s levels, we computed one-way

ANOVAs with number of clusters (k = 2–7) as factor and ARI

index measuring similarity as the dependent variable, sepa-

rately for each pair of modality (RSFC vs. MACM, RSFC vs. SC,

and MACM vs. SC).

Cross-modal comparisons between SC and functional

modalities (RSFC, MACM) resulted in less consistency than

between the 2 functional CBP modalities (RSFC vs. MACM). The

highest similarity between RSFC and SC was achieved for a par-

tition of 2 (M = 0.58, SE = 0.03) and 6 clusters (M = 0.41, SE =

0.05) [F(5, 119 999) = 167 974.16, P < 0.0001] (see Fig. 3). The com-

parison between MACM and SC revealed that the highest con-

sistency occurred at a 2- (M = 0.54, SE = 0.15), 3- (M = 0.47, SE =

0.04), and 5-cluster partition (M = 0.43, SE = 0.06), [F(5, 119 999) =

17 685.1, P < 0.0001]. All post hoc Bonferroni-corrected compari-

sons were significant (P < 0.0001).

Visual examination suggested that the highest convergence

between SC and functional modalities could be observed at low

granularity, that is, for 2-cluster partition in which all modali-

ties subdivided the hippocampus into an anterior and a poste-

rior cluster. At the next subdivision level, partitions already

differed markedly between modalities. Namely, the pattern of

subdivisions based on SC is dominated by a medial–lateral

organization that strikingly mimics cytoarchitecture differenti-

ation between subiculum and CA subfields. Such a medial–lat-

eral subdivision first concerns the posterior portion of the

hippocampus (at 3-cluster partition) but extends into the hip-

pocampus head at 4-cluster partition (see Fig. 3).

In turn, functional convergence between RSFC and MACM

showed a significant effect on the ARI [F(5, 719 999) = 12 506.39,

P < 0.0001], with the highest convergence being observed for

partitions of 5 (M = 0.55, SE = 0.10), 3 (M = 0.49, SE = 0.03), and 7

clusters (M = 0.48, SE = 0.02) (see Supplementary Results II.2,

Table 2). Consequently, partitions into 3, 5, and 7 subregions

were considered as an optimal level of partitions for defining

robust functional maps of the hippocampus.

In addition to the quantitative analysis, the visual examina-

tion of the partition schemes also proposed high convergence

for 3, 5, and 7 clusters, revealing that the 3-cluster partition

divided the hippocampus into anterior, intermediate, and pos-

terior subregions in both modalities (Fig. 3). In turn, the

5-cluster partition divided the hippocampus into one anterior

cluster (head), 3 intermediate clusters (intermediate caudal,

intermediate lateral and medial, for the body) and finally, a

posterior cluster (tail). Finally, the 7-cluster partition included 3

anterior, 3 intermediate clusters, and one posterior subregion

(see Fig. 3).

Cross-modal Functional Consensus Map

Cross-modal comparisons of CBP modalities revealed high con-

vergence between RSFC and MACM, especially at higher granu-

larities, whereas SC showed an idiosyncratic subdivision that

deviated from pure functional modalities. For this reason, we

established a pure functional cross-modal map of the hippo-

campus using bootstrap resampling as described in section

Consensus Clustering and based on RSFC and MACM parcella-

tions while excluding SC. Importantly, we created functional

maps at different granularity levels (3, 5, and 7 clusters) reflect-

ing convergence between modalities as an approximation of

biological validity. These functional maps at different partition

levels should allow the community to investigate hippocam-

pus’ function and dysfunction at various levels of organization.

In the present study, we focused on the 7-cluster partition to

study hippocampus function as this high level of partition

offers a detailed architecture along the anterior–posterior axis

with small functional units.

As illustrated in Figure 4, each and every retained level of

granularity revealed a specific aspect of hippocampal func-

tional organization. The cross-modal 3-cluster partition subdi-

vided the left and right hippocampi into an anterior (head),

intermediate (body), and a posterior (tail) subregion. At the

next subdivision (5-cluster granularity), bilateral hippocampi

were partitioned into a posterior, intermediate part including 3

subregions—intermediate caudal, intermediate lateral rostral,

and intermediate medial rostral—and finally an anterior subre-

gion. The 7-cluster cross-modal partition showed hemispheric

asymmetry. The body of the right hippocampus was subdivided

into one intermediate lateral and 2 intermediate medial clus-

ters. In contrast, the left hippocampus was partitioned into 2

intermediate lateral clusters and one intermediate medial clus-

ter (see Fig. 4). However, the posterior tail cluster as well as the

head, which was subdivided into 3 clusters (anterior rostral,

anterior lateral and anterior medial), were found in both

hemispheres.

We hypothesized that the subdivision into medial versus

lateral subregions could partially reflect the already known

cytoarchitectonic subdivision. The lateral segments in the body

of the hippocampus corresponded mainly to the CA1–3 sub-

fields and the medial clusters mainly to the subiculum. This

hypothesis was supported by a quantitative comparison of our

clusters with cytoarchitecture from the Anatomy Toolbox (see

Table 1).

Cluster Characterization

After having defined a functional parcellation map of the hip-

pocampus, we characterized the subregions with regard to

behavioral functions using BrainMap and NeuroSynth activa-

tion databases. We focused on the finer partitions (7 subre-

gions) since an examination of changes in behavioral

associations across subregions at this high partition level could

provide novel insights into the functional dimensions, which

has not been investigated previously. More concretely, at this

high level of partitions, we could both track behavioral associa-

tions across the anterior–posterior gradient and explore

medial–lateral differentiation.
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Anterior Versus Posterior Functional Differentiation

The characterization with BrainMap and NeuroSynth revealed

a functional gradient along the anterior–posterior axis of the

hippocampus that, on the one hand, supported the hypothesis

of an emotion–cognition gradient, and on the other hand, sug-

gested a self-world-centric processing gradient.

In BrainMap, anterior clusters were more likely engaged in

emotion processing, whereas posterior subregions displayed a

sparse functionality emphasizing higher cognition functions

requiring abstract representations (e.g., Cognition.memory,

Cognition.memory.explicit, Cognition.memory.language.seman-

tics). (see Fig. 5). In addition, the anterior clusters were associ-

ated with various behavioral domains such as perception,

interoception, and cognition, demonstrating a diverse behavioral

spectrum.

NeuroSynth provided a more detailed functional distinction

along the anterior–posterior axis suggesting a gradient from

self-centric (anterior parts) to more world-centric processing

(posterior parts) as represented in Figure 6. The more anterior

head clusters were engaged in cognitive and emotional pro-

cesses related to personal experiences (e.g., episodic memory,

experiences, autobiographical memory), whereas the more pos-

terior clusters were associated with behavior like navigation

(which requires the use of an abstract representation) and the

processing of information in its environmental context. All the

other intermediate body and head subregions showed a

Figure 3. Hippocampus partitions based on SC, MACM, RSFC, and cytoarchitecture mapping. Mean ARI (±standard error). All comparisons between cluster solutions

showed significant differences.
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graduated profile within this qualitative behavioral gradient

(see Fig. 6) and all clusters, independent of their position along

the anterior–posterior axis, were associated with encoding,

memory and retrieval processes. Interestingly, the gradients

were especially evident in the lateral clusters (green, purple,

light blue (orange), and yellow) of the hippocampus that were

associated with CA subfields along the anterior–posterior axis

as illustrated in Figures 5 and 6.

Medial Versus Lateral Functional Differentiation

In addition to an anterior–posterior organization, the parcella-

tion yielded a medial versus lateral differentiation predomi-

nantly in the body and partly in the head. In order to explore the

functional relevance of the medial–lateral axis, we merged the

intermediate clusters into one medial VOI segment and one lat-

eral VOI segment, while anterior rostral and posterior subregions

were not integrated (see Fig. 4). Along the medial–lateral dimen-

sion, the functional differentiation was less obvious with only

slight differences between the 2 segments (see Figs 5 and 6). The

medial segments were engaged in perception (visual shape dis-

crimination), interoception (respiration regulation), dorsal atten-

tion, and familiarity. Navigation, declarative memory, and

thinking were also associated with medial parts. In contrast, the

lateral segments seemed to assimilate information into the hip-

pocampal memory system hence being engaged in associative

memory, learning, reinforcement, and extinction. Finally, we

observed a lateralization effect in the sense that left lateral parts

were involved in words and language processing and the right

lateral subregions in emotion processing of happiness, anger,

and anxiety.

Discussion

In this study, we investigated the hippocampal organization in

humans bridging the gap between hippocampal architecture

and function using multimodal CBP and 2 complementary

databases for functional characterization. In contrast to other

CBP modalities, RSFC, which is especially sensitive to noise,

required a preliminary optimal denoising, which we evaluated

in this study in regard to clustering stability and voxels’ proper-

ties. Our results showed that the combination of a model-based

(FIX) and a model-free (WM/CSF regression) denoising tech-

nique resulted in stable and biological plausible parcellations

estimated through convergence across modalities. Especially,

both pure functional modalities, MACM and RSFC, displayed

high convergence at lower and higher parcellation granularities

and could therefore be combined to derive a cross-modal func-

tional map. We excluded SC from the cross-modal map as this

modality demonstrated a relatively specific organization partly

reflecting functional, as well as micro-architectonic charac-

teristics. We emphasized and characterized the cross-modal

7-cluster hippocampus yielding a subdivision into one poste-

rior cluster, 3 head clusters and depending on lateralization 2

or 3 intermediate clusters along the anterior–posterior and

medial–lateral dimension. Following this, our behavioral profil-

ing of the clusters revealed a functional emotion–cognition and

a self-world-centric gradient along the anterior–posterior

dimension, which seemed to be particularly evident along the

lateral subregion and more pronounced in the right hemi-

sphere. In the following sections, after briefly discussing our

new methodological findings regarding denoising for RSFC-CBP,

we discuss the new insight into hippocampus organization and

function brought by the current study with regard to previous

literature.

Optimal Denoising for RSFC-CBP

Our preliminary goal was to find a stable and consistent RSFC

parcellation. But in the absence of unanimous guidelines of

denoising approaches for RSFC-CBP in the scientific literature,

we investigated various strategies with regard to stability, and

voxels’ properties such as time course similarity and connectiv-

ity profile dissimilarity.

FIX + WM/CSF was found to contribute to highly stable par-

titions of RSFC-CBP, although other denoising techniques

showed likewise high stability of parcellations. The subsequent

examination of voxels’ properties on which the clustering

builds suggested 2 potential mechanisms underlying higher

stability of FIX + WM/CSF. First, the part of variance neutralized

by FIX + WM/CSF seemed to contain structured noise, as seed

voxels’ time course similarity highly decreased when this strat-

egy was applied (when compared to not denoised data and

other denoising strategies, except for FIX + GSR). Second, and

more importantly in the application-driven perspective, FIX +

WM/CSF increased the discrimination between voxels as

reflected by the significant improvement of seed voxels’ con-

nectivity profile dissimilarity. These influences eventually

resulted in a better assignment of voxels to clusters. Overall

our investigation promoted the combination of a model-based

(FIX) and a model-free (WM/CSF regression) technique as an

optimal denoising method, both from voxel-wise properties

and partition-wise clustering. Burgess et al. (2016) already

Figure 4. Functional multimodal maps across different granularities showing

differentiation along the anterior–posterior and the medial–lateral dimensions.
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proposed to use FIX and GSR simultaneously in order to elimi-

nate both local spatial artifacts and global drifts in fMRI data.

Our results also suggested that the combination of FIX and GSR

successfully removed structured noise outperforming FIX or

GSR applied separately. FIX + GSR also led to stable parcella-

tions in a similar extent than FIX + WM/CSF, but the use of

FIX + WM/CSF was further supported by its improvement of

voxels connectivity fingerprint discriminability, which is

especially important in the clustering context. The reason

why FIX + GSR performed less efficiently might be that GSR

on one hand effectively neutralized motion artifacts, but on

the other hand, distorted distance relationships (Murphy

Table 1 Consensus hippocampus in comparison to cytoarchitecture

Consensus cluster Cluster size x y z Overlap with cytoarchitectonic subfields

Right hippocampus

Anterior rostral cluster (yellow) 161 22 −10 −24 CA1, subiculum

Anterior lateral cluster (light blue) 181 31 −16 −20 CA1, DG, subiculum, CA2

Anterior medial cluster (red) 139 21 −17 −17 Subiculum, CA3

Intermediate lateral cluster (purple) 128 33 −26 −12 DG, CA1, CA2

Intermediate medial 2 clusters (ocher) 34 26 −22 −16 Subiculum

Intermediate medial one cluster (dark blue) 86 24 −31 −9 Subiculum, DG

Posterior cluster (green) 129 26 −37 −2 DG, CA1

Left hippocampus cluster

Anterior rostral cluster (yellow) 166 −23 −11 −24 CA1, subiculum

Anterior lateral cluster (orange) 122 −31 −15 −21 CA1, DG, CA2

Anterior medial cluster (red) 149 −24 −20 −18 Subiculum, CA3

Intermediate lateral 2 clusters (light blue) 133 −33 −24 −14 DG, CA1, CA2

Intermediate lateral one cluster (purple) 76 −31 −35 −7 DG, CA1

Intermediate medial cluster (dark blue) 112 −26 −30 −9 Subiculum, DG

Posterior cluster (green) 73 −20 −35 1 DG, CA1

Figure 5. Anterior to posterior characterization with BrainMap.
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et al. 2009; Satterthwaite et al. 2013, 2017; Yan et al. 2013;

Power et al. 2014) that influenced connectivity measures.

Based on these considerations, we can assume that GSR can

have detrimental effects for parcellation and that WM/CSF

represents a better alternative for combination with FIX. It

has been suggested that WM/CSF regression eliminates more

effectively respiration and cardiac effects (Jo et al. 2010;

Anderson et al. 2011; Liu 2016) and more generally, any slow

undulations compared with GSR or FIX. FIX, in turn, could

catch local or spatial-related artifacts, which cannot be cap-

tured by WM/CSF in the same way. For these reasons, we

here suggest that the combination of FIX with WM/CSF repre-

sents the most sophisticated double-approach for denoising,

in particular in the context of CBP.

Figure 6. Anterior to posterior characterization with NeuroSynth.
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A Convergent Functional Topography of the

Hippocampus Across Different Measures of Functional

Connectivity

In our study, 2 functional CBP modalities, task-independent

(RSFC) and task-dependent (MACM), yielded CBP results with

high convergence at the granularity of 3-, 5-, and 7-cluster par-

titions, despite divergent methodological procedures. This high

similarity between conceptually related methods, but based on

completely different procedures and independent objects of

investigation (i.e., coactivations across paradigms vs. partici-

pants’ RS-fMRI) argued for biological relevance of the revealed

topographical pattern. Importantly, the convergence in parti-

tion scheme between the 2 modalities cannot be attributed to

an artifact intrinsic to the k-means clustering as a similar clus-

tering procedure applied to structural covariance data revealed

a different partition scheme. Indeed, SC-CBP parcellations devi-

ated substantially from functional organizations already at low

granularity even though at high granularity, this modality also

contained a functional head separation, the medial–lateral

differentiation within body and tail seemed to mirror

cytoarchitectonic differentiation between cornu ammonis

and subiculum. Although our goal was not to elucidate the

relationship between functional aspects, microstructure,

and SC, our parcellation work suggested that SC pattern

could to a greater extent than functional connectivity be

influenced by microstructural aspects. Future studies should

further investigate the relationships between SC, micro-

structure, and functional connectivity across the human

brain.

Overall, our findings converged with previous literature

reporting studies in different methods and species, which fur-

ther supported the biological validity of the obtained parcella-

tions. In this context, one of the most prominent subdivisions

for the hippocampus along the anterior–posterior axis is the tri-

partite model found in human and non-human segmentations.

According to that model, the hippocampus is subdivided in an

anterior (ventral, head), intermediate (body), and posterior (dor-

sal, tail) subregions, shown by anatomical (Swanson and

Cowan 1977) and gene expression data in rodents (Dong et al.

2009), and CBP research in humans (Robinson et al. 2015, 2016).

Furthermore, Robinson et al. (2015) and Chase et al. (2015)

extended the subdivision of the hippocampus and revealed an

organization into 5 subregions for the entire hippocampus as

well as for subiculum subfield using CBP. Robinson’s (2015)

MACM parcellation yielded 4 serial clusters along the anterior–

posterior axis and a fifth anterior head cluster tilted medially

(see Fig. 1). Of note, this pattern was replicated in the current

study by RSFC parcellation but does not appear as a prominent

pattern retained in the cross-modal map. Beyond these minor

differences between studies, nonspecies studies divided the

CA1 subfield in rodents in 5 serial segments along the dorso-

ventral axis (Risold and Swanson 1996; Petrovich et al. 2001),

supporting the observation and potential biological meaning-

fulness of serially aligned clusters in our and Robinson’s work.

To investigate hippocampus’ function, we capitalized on the

consensual 7-cluster partition scheme as it provides a very

detailed functional architecture representing anterior–posterior

gradient into small units, which was never achieved before.

Our cross-modal map of the hippocampus at this level exhib-

ited 3 head clusters, 3 or 2 intermediate clusters dependent on

lateralization and one tail cluster. Interestingly, the posterior

cluster in the tail remained as a relatively homogeneous func-

tional region across functional modalities and granularities.

This level of fine parcellation also contains a medial–lateral dif-

ferentiation, which seemed to reflect differences between

cornu ammonis and subiculum, respectively. According to the

current parcellation, these 2 regions could be partitioned into

serially positioned clusters along the anterior–posterior axis,

which is in line with other studies (Dong et al. 2009; Fanselow

and Dong 2010). In other words, our clustering of 7 subregions

seemed to reflect on the one hand the differentiation between

cornu ammonis and subiculum and on the other hand further

subdivisions along the anterior–posterior axis.

Functional Organization of the Hippocampus and

Human Behavior

Based on the high convergence between RSFC and MACM, we

computed a fine consensual parcellation combining both

modalities. We then drew up the behavioral profile of each sub-

region using BrainMap and NeuroSynth as 2 complementary

databases. We hence behaviorally characterized the anterior–

posterior gradient and the medial–lateral differentiation taking

an overarching view with activation databases.

Medial–Lateral Differentiation

We hypothesized that our organization along the medial–lat-

eral axis reflected the differentiation between the subiculum

(medial) and the CA subfields (lateral) evidenced by cytoarchi-

tecture. Our behavioral profiling suggested that the medial seg-

ments participated in navigation, declarative memory, and

familiarity, whereas the lateral segments were associated with

reinforcement, learning, and extinction. Overall functional dif-

ferences along the medial–lateral axis were sparse. Based on

these behavioral descriptions we can only speculate that the

lateral clusters were functionally involved in storing potentially

integrating information into other systems and networks,

whereas the functional specificity of the medial subregion was

less evident. The conceptual inferences of the present study

are limited on the one hand by the spatial precision of standard

MRI measurements and on the other hand, by current cognitive

ontologies which have been derived by the study of human

behavior and mind. By making all our partitions openly avail-

able to the scientific community, we invite future studies to

further complement these first integrative findings on hippo-

campus organization and function. Nevertheless and impor-

tantly, the medial–lateral differentiation in the current fine

parcellation has revealed that the functional gradient proposed

in previous studies is mainly evident along the lateral segment.

This aspect of functional organization of the hippocampus has

presumably complicated or obscured the characterization and

understanding of the gradient. In the current study, extensive

behavioral profiling of fine subdivisions has allowed us to dis-

cuss new hypothesis beyond common psychology distinctions

of behavioral functions.

Anterior–Posterior Organization

Evidence for an emotion–cognition and self-world-centric gradient.

The present study brought new integrative insights across

research fields on the longitudinal functional differentiation of

the hippocampus previously demonstrated in rats (Moser et al.

1993; Jung et al. 1994; Moser and Moser 1998; Vann et al. 2000;

de Hoz et al. 2003), monkeys (Colombo et al. 1998) and humans

(Small et al. 2001; Poppenk et al. 2013; Robinson et al. 2015,

2016) by revealing an emotion–cognition gradient within the

broad behavioral domains of BrainMap and a self-world-centric

Multimodal Parcellations and Extensive Behavioral Profiling Plachti et al. | 4607
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gradient based on more specific behavioral concepts in

NeuroSynth. For reader’s convenience the main pattern is illus-

trated in Figure 7 in which we focused on lateral clusters. We

discuss in the following these patterns with regard to previous

hypotheses proposed in the literature.

Besides the already often discussed differentiation of emo-

tion–cognition along the anterior–posterior dimension that we

replicated with both databases integrating the scientific knowl-

edge of thousands of studies, we also speculated that hippo-

campal organization along the anterior–posterior axis could be

better explained with a self-world-centric gradient. As actually

almost all subregions are associated with memory processes,

we speculate a self-centric information processing mode in the

most anterior cluster with psychological functions such as

autobiographical memory and emotion (see Fig. 7) contrasting

with a world-centric processing of information calling concepts

such as navigation, scene, and context processing associated

with the most posterior hippocampal subregions. In other

words, the overall pattern of behavioral concepts along the

anterior–posterior axis suggest, in our view, a latent or underly-

ing functional change from one pole of self-related processing

to another pole of world-related processing. Importantly, gen-

eral processes like encoding, and retrieval appeared equally

distributed along the longitudinal axis. Thus, altogether our

findings are more in favor of a self-world-centric information

processing gradient rather than a behavioral domain-wise

(imagination–perception (Zeidman and Maguire 2016) or encod-

ing–retrieval organization (Lepage et al. 1998; Prince et al. 2005;

Kim 2015)) along the anterior–posterior axis of the hippocam-

pus. Importantly, this self- and world-centric distinction may

be reminiscent of egocentric versus allocentric distinction sug-

gested by studies of spatial processing in rodents (Morris et al.

1986) and is particularly evident in the right hemisphere, but

their meaning in the human cognitive system should neverthe-

less be considered beyond spatial representation, that is, also

in relation to memory and decision-making domains. If this

hypothesis holds true, it has important implications for our

understanding of psychiatric and neurological diseases but its

validity remains to be further evaluated in future studies using

hypothesis-based experiments.

Limitations. The large-scale data aggregation on which the

current study capitalized also comes with specific limitations.

First, we focused on MRI, a method, which has a relatively lim-

ited spatial resolution and a relatively limited signal-to-noise

ratio in the subcortical structures. Therefore, the clusters we

have obtained can only be considered as homogeneous regions

with respect to the usual MRI signal. Accordingly, we assume

that our lateral segment actually represents an aggregation of

the known different CA subfields showing different cytoarchi-

tecture and function. In particular, rodent studies suggested

that CA1 and CA3 differ in their involvement in processes such

as pattern separation and pattern completion (Guzowski et al.

2004). While these differentiations remain debated in humans

(Deuker et al. 2014; Koster et al. 2018) in whom processes such

as encoding, retrieval, and association between unrelated items

have been additionally proposed to differentiate distinct sub-

fields (Bakker et al. 2008; Deuker et al. 2014; Dimsdale-Zucker

et al. 2018). These differentiations could not be investigated in

the present study due to a lack of behavioral precision in the

representative concepts of both activation databases, in

Figure 7. Emotion–cognition and self-world-centric functional gradient along the anterior–posterior axis. Lateral clusters display an emotion–cognition gradient

yielded with BrainMap and a self-world-centric gradient found with NeuroSynth.
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addition to the aforementioned limited spatial resolution.

Future studies should therefore investigate how the anterior–

posterior functional differentiation could be integrated with the

subfields functional specialization in the hippocampus.

Another relevant limiting point refers to the complex

structure of the hippocampus itself and its consequences for

the optimal number of clusters. The human hippocampus is

characterized by angulation and a variable number of digita-

tions (Wisse et al. 2012; Ding and Van Hoesen 2015; Treit

et al. 2018). Both features could have influenced our results in

terms of the optimal number of clusters. Due to the limited

spatial resolution of MRI data, we may have missed differ-

ences in connectivity profiles of conflated subfields in the

posterior hippocampus hence leading to a single-tail cluster

in the present study. Additionally, hippocampal gyrification,

known as digitations, vary between individuals and have

been previously discussed as a possible factor for interindi-

vidual variability in the hippocampus (Ding and Van Hoesen

2015; Chang et al. 2018; DeKraker et al. 2018; Treit et al. 2018).

How this affects cognition and psychopathology (Oppenheim

et al. 1998) and whether different digitations have different

connectivity profiles and hence could influence clustering

pattern is still unclear. This question should be addressed in

future studies with high-spatial precision techniques. Overall,

the maps and conceptual findings reported in the present study

are useful for the specific mapping modality they have been

derived from, that is, conventional field MRI in humans.

Conclusions

In the present study, we established for the first time a robust

and stable RSFC hippocampal parcellation by applying a combi-

nation of a model-free and a model-based denoising framework.

By combining partitions based on spontaneous connectivity

with partitions based on task-based connectivity, we built the

first cross-modal generic hippocampal map at different levels of

partition. Extensive behavioral profiling of the finest partition

allowed inferences regarding the nature of information proces-

sing principles along the anterior–posterior axis in the hippo-

campus, beyond the concepts derived from psychological

studies in specific fields. Importantly, while previous characteri-

zation of the anterior–posterior differentiation based on these

concepts cannot be refuted and were partially supported, they

could not account for the range of associations observed by our

quantitative approaches. In turn, we proposed a self-world-

centric processing mode gradient along the anterior–posterior

axis in humans, a data-based hypothesis that should be further

investigated with specific model-based approaches. Further

functional decoding allowed us to speculate that the medial–lat-

eral distinction represented an assimilating process for the lat-

eral part integrating information across different systems.

Importantly, our medial–lateral distinction for the first time evi-

denced that the anterior–posterior gradient is predominantly

observed in the lateral part of the hippocampus and an indepen-

dent mapping approach based on structural data (structural

covariance) further evidenced a medial–lateral distinction.

Finally, the pattern of separation revealed by structural covari-

ance appeared as a hybridization of functional connectivity

and microstructure hence bringing new light into this rela-

tively understudied mapping modality and offering an alter-

native and potentially better partition for compression of

structural data (cfr. (Varikuti et al. 2018)). All our unimodal

and cross-modal maps are available in the ANIMA database

(http://anima.fz-juelich.de/) to support future hippocampal

investigations of hippocampal function in healthy or patho-

logical populations.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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