000860632 001__ 860632
000860632 005__ 20240711113525.0
000860632 0247_ $$2doi$$a10.1016/j.fusengdes.2018.04.001
000860632 0247_ $$2ISSN$$a0920-3796
000860632 0247_ $$2ISSN$$a1873-7196
000860632 0247_ $$2Handle$$a2128/21570
000860632 0247_ $$2WOS$$aWOS:000452583700137
000860632 037__ $$aFZJ-2019-01305
000860632 082__ $$a530
000860632 1001_ $$0P:(DE-HGF)0$$aFederici, G.$$b0$$eCorresponding author
000860632 245__ $$aDEMO design activity in Europe: Progress and updates
000860632 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000860632 3367_ $$2DRIVER$$aarticle
000860632 3367_ $$2DataCite$$aOutput Types/Journal article
000860632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549554142_22653
000860632 3367_ $$2BibTeX$$aARTICLE
000860632 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860632 3367_ $$00$$2EndNote$$aJournal Article
000860632 520__ $$aThis paper describes the progress of the DEMO Design Activities in Europe and particularly the work done to address critical design integration issues that affect the machine configuration and performance, the plant concept layout and the selection of system design and technologies. Work continues to be primarily focused on the design integration of a pulsed baseline DEMO reactor concept, but a number of alternative configurations (e.g., a double-null divertor and a snowflake divertor as well as a ‘flexi’ DEMO that operates initially in an inductively driven pulsed regime, with the possibility to be upgraded to a long-pulse or steady-state machine with a greater reliance on auxiliary current drive, etc.) are under preliminary study, especially to evaluate their DEMO reactor relevance. Some initial considerations are given on the strategy to implement a structured design and technology down-selection, that progressively reviews and narrows options to arrive at the DEMO plant concept that addresses major system integration risks and offers the best probability to satisfy all stakeholder mission requirements. Finally, some recent technical achievements are highlighted.
000860632 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000860632 588__ $$aDataset connected to CrossRef
000860632 7001_ $$0P:(DE-Juel1)156326$$aBachmann, C.$$b1$$ufzj
000860632 7001_ $$0P:(DE-HGF)0$$aBarucca, L.$$b2
000860632 7001_ $$0P:(DE-Juel1)129967$$aBiel, W.$$b3$$ufzj
000860632 7001_ $$0P:(DE-HGF)0$$aBoccaccini, L.$$b4
000860632 7001_ $$0P:(DE-HGF)0$$aBrown, R.$$b5
000860632 7001_ $$0P:(DE-HGF)0$$aBustreo, C.$$b6
000860632 7001_ $$0P:(DE-HGF)0$$aCiattaglia, S.$$b7
000860632 7001_ $$0P:(DE-HGF)0$$aCismondi, F.$$b8
000860632 7001_ $$0P:(DE-HGF)0$$aColeman, M.$$b9
000860632 7001_ $$0P:(DE-HGF)0$$aCorato, V.$$b10
000860632 7001_ $$0P:(DE-HGF)0$$aDay, C.$$b11
000860632 7001_ $$0P:(DE-HGF)0$$aDiegele, E.$$b12
000860632 7001_ $$0P:(DE-HGF)0$$aFischer, U.$$b13
000860632 7001_ $$0P:(DE-HGF)0$$aFranke, T.$$b14
000860632 7001_ $$0P:(DE-HGF)0$$aGliss, C.$$b15
000860632 7001_ $$0P:(DE-HGF)0$$aIbarra, A.$$b16
000860632 7001_ $$0P:(DE-HGF)0$$aKembleton, R.$$b17
000860632 7001_ $$0P:(DE-HGF)0$$aLoving, A.$$b18
000860632 7001_ $$0P:(DE-HGF)0$$aMaviglia, F.$$b19
000860632 7001_ $$0P:(DE-Juel1)166261$$aMeszaros, B.$$b20$$ufzj
000860632 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b21$$ufzj
000860632 7001_ $$0P:(DE-HGF)0$$aTaylor, N.$$b22
000860632 7001_ $$0P:(DE-HGF)0$$aTran, M. Q.$$b23
000860632 7001_ $$0P:(DE-HGF)0$$aVorpahl, C.$$b24
000860632 7001_ $$0P:(DE-HGF)0$$aWenninger, R.$$b25
000860632 7001_ $$0P:(DE-HGF)0$$aYou, J. H.$$b26
000860632 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2018.04.001$$gVol. 136, p. 729 - 741$$nPart A$$p729 - 741$$tFusion engineering and design$$v136$$x0920-3796$$y2018
000860632 8564_ $$uhttps://juser.fz-juelich.de/record/860632/files/1-s2.0-S0920379618302898-main.pdf$$yOpenAccess
000860632 8564_ $$uhttps://juser.fz-juelich.de/record/860632/files/1-s2.0-S0920379618302898-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860632 909CO $$ooai:juser.fz-juelich.de:860632$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156326$$aForschungszentrum Jülich$$b1$$kFZJ
000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b3$$kFZJ
000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166261$$aForschungszentrum Jülich$$b20$$kFZJ
000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b21$$kFZJ
000860632 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000860632 9141_ $$y2019
000860632 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860632 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860632 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860632 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000860632 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2017
000860632 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860632 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860632 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860632 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860632 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860632 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860632 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860632 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860632 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000860632 9801_ $$aFullTexts
000860632 980__ $$ajournal
000860632 980__ $$aVDB
000860632 980__ $$aUNRESTRICTED
000860632 980__ $$aI:(DE-Juel1)IEK-4-20101013
000860632 981__ $$aI:(DE-Juel1)IFN-1-20101013