000860632 001__ 860632 000860632 005__ 20240711113525.0 000860632 0247_ $$2doi$$a10.1016/j.fusengdes.2018.04.001 000860632 0247_ $$2ISSN$$a0920-3796 000860632 0247_ $$2ISSN$$a1873-7196 000860632 0247_ $$2Handle$$a2128/21570 000860632 0247_ $$2WOS$$aWOS:000452583700137 000860632 037__ $$aFZJ-2019-01305 000860632 082__ $$a530 000860632 1001_ $$0P:(DE-HGF)0$$aFederici, G.$$b0$$eCorresponding author 000860632 245__ $$aDEMO design activity in Europe: Progress and updates 000860632 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018 000860632 3367_ $$2DRIVER$$aarticle 000860632 3367_ $$2DataCite$$aOutput Types/Journal article 000860632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549554142_22653 000860632 3367_ $$2BibTeX$$aARTICLE 000860632 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000860632 3367_ $$00$$2EndNote$$aJournal Article 000860632 520__ $$aThis paper describes the progress of the DEMO Design Activities in Europe and particularly the work done to address critical design integration issues that affect the machine configuration and performance, the plant concept layout and the selection of system design and technologies. Work continues to be primarily focused on the design integration of a pulsed baseline DEMO reactor concept, but a number of alternative configurations (e.g., a double-null divertor and a snowflake divertor as well as a ‘flexi’ DEMO that operates initially in an inductively driven pulsed regime, with the possibility to be upgraded to a long-pulse or steady-state machine with a greater reliance on auxiliary current drive, etc.) are under preliminary study, especially to evaluate their DEMO reactor relevance. Some initial considerations are given on the strategy to implement a structured design and technology down-selection, that progressively reviews and narrows options to arrive at the DEMO plant concept that addresses major system integration risks and offers the best probability to satisfy all stakeholder mission requirements. Finally, some recent technical achievements are highlighted. 000860632 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000860632 588__ $$aDataset connected to CrossRef 000860632 7001_ $$0P:(DE-Juel1)156326$$aBachmann, C.$$b1$$ufzj 000860632 7001_ $$0P:(DE-HGF)0$$aBarucca, L.$$b2 000860632 7001_ $$0P:(DE-Juel1)129967$$aBiel, W.$$b3$$ufzj 000860632 7001_ $$0P:(DE-HGF)0$$aBoccaccini, L.$$b4 000860632 7001_ $$0P:(DE-HGF)0$$aBrown, R.$$b5 000860632 7001_ $$0P:(DE-HGF)0$$aBustreo, C.$$b6 000860632 7001_ $$0P:(DE-HGF)0$$aCiattaglia, S.$$b7 000860632 7001_ $$0P:(DE-HGF)0$$aCismondi, F.$$b8 000860632 7001_ $$0P:(DE-HGF)0$$aColeman, M.$$b9 000860632 7001_ $$0P:(DE-HGF)0$$aCorato, V.$$b10 000860632 7001_ $$0P:(DE-HGF)0$$aDay, C.$$b11 000860632 7001_ $$0P:(DE-HGF)0$$aDiegele, E.$$b12 000860632 7001_ $$0P:(DE-HGF)0$$aFischer, U.$$b13 000860632 7001_ $$0P:(DE-HGF)0$$aFranke, T.$$b14 000860632 7001_ $$0P:(DE-HGF)0$$aGliss, C.$$b15 000860632 7001_ $$0P:(DE-HGF)0$$aIbarra, A.$$b16 000860632 7001_ $$0P:(DE-HGF)0$$aKembleton, R.$$b17 000860632 7001_ $$0P:(DE-HGF)0$$aLoving, A.$$b18 000860632 7001_ $$0P:(DE-HGF)0$$aMaviglia, F.$$b19 000860632 7001_ $$0P:(DE-Juel1)166261$$aMeszaros, B.$$b20$$ufzj 000860632 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b21$$ufzj 000860632 7001_ $$0P:(DE-HGF)0$$aTaylor, N.$$b22 000860632 7001_ $$0P:(DE-HGF)0$$aTran, M. Q.$$b23 000860632 7001_ $$0P:(DE-HGF)0$$aVorpahl, C.$$b24 000860632 7001_ $$0P:(DE-HGF)0$$aWenninger, R.$$b25 000860632 7001_ $$0P:(DE-HGF)0$$aYou, J. H.$$b26 000860632 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2018.04.001$$gVol. 136, p. 729 - 741$$nPart A$$p729 - 741$$tFusion engineering and design$$v136$$x0920-3796$$y2018 000860632 8564_ $$uhttps://juser.fz-juelich.de/record/860632/files/1-s2.0-S0920379618302898-main.pdf$$yOpenAccess 000860632 8564_ $$uhttps://juser.fz-juelich.de/record/860632/files/1-s2.0-S0920379618302898-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000860632 909CO $$ooai:juser.fz-juelich.de:860632$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156326$$aForschungszentrum Jülich$$b1$$kFZJ 000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b3$$kFZJ 000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166261$$aForschungszentrum Jülich$$b20$$kFZJ 000860632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b21$$kFZJ 000860632 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000860632 9141_ $$y2019 000860632 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000860632 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000860632 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000860632 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000860632 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2017 000860632 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000860632 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000860632 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000860632 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000860632 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000860632 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000860632 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000860632 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000860632 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000860632 9801_ $$aFullTexts 000860632 980__ $$ajournal 000860632 980__ $$aVDB 000860632 980__ $$aUNRESTRICTED 000860632 980__ $$aI:(DE-Juel1)IEK-4-20101013 000860632 981__ $$aI:(DE-Juel1)IFN-1-20101013