000860634 001__ 860634
000860634 005__ 20240711113525.0
000860634 0247_ $$2doi$$a10.1140/epjd/e2017-70825-3
000860634 0247_ $$2ISSN$$a1434-6060
000860634 0247_ $$2ISSN$$a1434-6079
000860634 0247_ $$2WOS$$aWOS:000417763500001
000860634 037__ $$aFZJ-2019-01307
000860634 082__ $$a530
000860634 1001_ $$0P:(DE-HGF)0$$aSeon, Changrae$$b0$$eCorresponding author
000860634 245__ $$aDesign of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak
000860634 260__ $$aHeidelberg$$bSpringer82339$$c2017
000860634 3367_ $$2DRIVER$$aarticle
000860634 3367_ $$2DataCite$$aOutput Types/Journal article
000860634 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549554646_16561
000860634 3367_ $$2BibTeX$$aARTICLE
000860634 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860634 3367_ $$00$$2EndNote$$aJournal Article
000860634 520__ $$aDesign and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6–32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5–25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput
000860634 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000860634 588__ $$aDataset connected to CrossRef
000860634 7001_ $$0P:(DE-HGF)0$$aHong, Joohwan$$b1
000860634 7001_ $$0P:(DE-HGF)0$$aSong, Inwoo$$b2
000860634 7001_ $$0P:(DE-HGF)0$$aJang, Juhyeok$$b3
000860634 7001_ $$0P:(DE-HGF)0$$aLee, Hyeonyong$$b4
000860634 7001_ $$0P:(DE-HGF)0$$aAn, Younghwa$$b5
000860634 7001_ $$0P:(DE-HGF)0$$aKim, Bosung$$b6
000860634 7001_ $$0P:(DE-HGF)0$$aJeon, Taemin$$b7
000860634 7001_ $$0P:(DE-HGF)0$$aPark, Jaesun$$b8
000860634 7001_ $$0P:(DE-HGF)0$$aChoe, Wonho$$b9
000860634 7001_ $$0P:(DE-HGF)0$$aLee, Hyeongon$$b10
000860634 7001_ $$0P:(DE-HGF)0$$aPak, Sunil$$b11
000860634 7001_ $$0P:(DE-HGF)0$$aCheon, MunSeong$$b12
000860634 7001_ $$0P:(DE-HGF)0$$aChoi, Jihyeon$$b13
000860634 7001_ $$0P:(DE-HGF)0$$aKim, Hyeonseok$$b14
000860634 7001_ $$0P:(DE-Juel1)129967$$aBiel, Wolfgang$$b15$$ufzj
000860634 7001_ $$0P:(DE-HGF)0$$aBernascolle, Philippe$$b16
000860634 7001_ $$0P:(DE-HGF)0$$aBarnsley, Robin$$b17
000860634 7001_ $$0P:(DE-HGF)0$$aO’Mullane, Martin$$b18
000860634 773__ $$0PERI:(DE-600)1459071-2$$a10.1140/epjd/e2017-70825-3$$gVol. 71, no. 12, p. 313$$n12$$p313$$tThe European physical journal / D Atomic, molecular, optical and plasma physics D$$v71$$x1434-6079$$y2017
000860634 8564_ $$uhttps://juser.fz-juelich.de/record/860634/files/Seon2017_Article_DesignOfITERDivertorVUVSpectro.pdf$$yRestricted
000860634 8564_ $$uhttps://juser.fz-juelich.de/record/860634/files/Seon2017_Article_DesignOfITERDivertorVUVSpectro.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860634 909CO $$ooai:juser.fz-juelich.de:860634$$pVDB
000860634 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b15$$kFZJ
000860634 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000860634 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860634 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J D : 2017
000860634 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860634 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860634 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860634 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860634 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860634 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860634 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860634 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860634 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860634 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000860634 980__ $$ajournal
000860634 980__ $$aVDB
000860634 980__ $$aI:(DE-Juel1)IEK-4-20101013
000860634 980__ $$aUNRESTRICTED
000860634 981__ $$aI:(DE-Juel1)IFN-1-20101013