001     860634
005     20240711113525.0
024 7 _ |a 10.1140/epjd/e2017-70825-3
|2 doi
024 7 _ |a 1434-6060
|2 ISSN
024 7 _ |a 1434-6079
|2 ISSN
024 7 _ |a WOS:000417763500001
|2 WOS
037 _ _ |a FZJ-2019-01307
082 _ _ |a 530
100 1 _ |a Seon, Changrae
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak
260 _ _ |a Heidelberg
|c 2017
|b Springer82339
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549554646_16561
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6–32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5–25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hong, Joohwan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Song, Inwoo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jang, Juhyeok
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lee, Hyeonyong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a An, Younghwa
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kim, Bosung
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jeon, Taemin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Park, Jaesun
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Choe, Wonho
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lee, Hyeongon
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Pak, Sunil
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Cheon, MunSeong
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Choi, Jihyeon
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kim, Hyeonseok
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Biel, Wolfgang
|0 P:(DE-Juel1)129967
|b 15
|u fzj
700 1 _ |a Bernascolle, Philippe
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Barnsley, Robin
|0 P:(DE-HGF)0
|b 17
700 1 _ |a O’Mullane, Martin
|0 P:(DE-HGF)0
|b 18
773 _ _ |a 10.1140/epjd/e2017-70825-3
|g Vol. 71, no. 12, p. 313
|0 PERI:(DE-600)1459071-2
|n 12
|p 313
|t The European physical journal / D Atomic, molecular, optical and plasma physics D
|v 71
|y 2017
|x 1434-6079
856 4 _ |u https://juser.fz-juelich.de/record/860634/files/Seon2017_Article_DesignOfITERDivertorVUVSpectro.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860634/files/Seon2017_Article_DesignOfITERDivertorVUVSpectro.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860634
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129967
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J D : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21