

NSXTool - new Software for Data Reduction at Monochromatic Single Crystal Diffractometers

Tobias E. Schrader

Andreas Ostermann

Eric Pellegrini,

Jonathan Fisher

Laurent Chapon

Jürgen Miksch, Founder of BISS

1984 bis 1993 als stellvertretender Direktor der Evangelischen Akademie

Tutzing

Instruments BIODIFF at MLZ and D19 at ILL

Both monochromatic neutron diffractometers with cylindrical detector

BIODIFF D19

Ewald construction and Bragg's Law

Myoglobin protein crystal (deuterated mother liquor) full data set recorded with CCD

BioDiff: exposure time per frame: 20 minutes, sample: Myoglobin in deuterated mother liquor

Flow chart of data treatment and model building

determination of crystal orientation, unit cell dimensions etc.
 Calculating integral of reflection intensities

-MOSFLM -HKL-denzo (comercial)

hkl-list for each scan: h k l Intensity Intensity error

Scaling of each hkl list to match each other

-SCALA (CCP4-program package)

Unified hkl-list of measurement := complete data set

Calculation of a first map

Additional information from the solution of the phase problem

Structure refinement

-Refinement of atom coordinates displacements Calculation of scattering density maps (netrons) or electron density maps (x-rays)

_

Map-plottinginspection of model to fit the map)

- real space changes and refinement to the model

-nCNS -PHENIX

-XtalView -Coot

Peak search with hkl DENZO

auto-index

d min=2.5 Å

d_min=1.5 Å

Integration of partial Bragg peaks with the commercial software hkl-denzo up to d_{min}=1.5 Å

The "old" HKL2000 software

- Not supported,
- Running under academic licence
- Need to re-new every 6 momths
- crashes frequently, if you press the buttons in the wrong order (also reboots the computer for you)
- No automatization, arbitrary choice of integration boxes...

Need something new!

Other alternatives

- XDS: no circular detector geometry
- IP mosflm
- DIALS: We are in contact with them...
- Mantid
- Leighton Coates: Recent Publication on 3-D
- ESS: Plans from Esko Oksanen for NMX
- ...???

Outline of the problem

• We have to integrate the Bragg spots belonging to one Bragg reflection...

Special issues regarding neutron crystallography as compared to x-ray

Background much more pronounced and not so homogenous

The x-ray case for comparison

Horizontal cut showing the background

New Data Reduction Software: NXStool

Allows to incorporate

- Absorption correction of crystal with convex hull
- Systematic optimization of integration box size by python scrippting
- Pushing resolution limits
- Monitoring detector parameters and detecting detector problems
 To be completed...
- Incorporation of a strategy software
- open source, well documented

People involved

Laurent Chapon

Eric Pellegrini

Jonathan Fisher

Peak finding based on image analysis

Filtering of the peaks found by the image analysis

Indexing of the Peaks, finding the right unit cell

Selecting the space group

Selecting the integration method

Refinement of beam position and direction and other instrumental parameters

Building a shape library for profile fitting

Result of the integration

dmax	dmin	nobs	nmerged	redundancy	Rmeac I	Rmeas(est.)	CChalf
			-				
19.78	4.19	1612	1153	1.398	0.166	0.016	0.853
4.19	3.33	1187	859	1.382	0.167	0.019	0.837
3.33	2.91	630	484	1.302	0.146	0.022	0.855
2.91	2.64	203	158	1.285	0.177	0.028	0.787
2.64	2.45	100	81	1.235	0.169	0.029	0.818
2.45	2.31	68	58	1.172	0.382	0.056	0.509
2.31	2.19	41	33	1.242	0.104	0.035	0.889
2.19	2.10	18	13	1.385	0.135	0.033	0.866
2.10	2.02	6	5	1.200	0.899	0.054	nan
2.02	1.95	5	4	1.250	0.230	0.040	nan
19.78	1.95	3871	2845	1.361	0.165	0.019	0.842

• Result of HKL2000, the old Software in use:

Shell Lo	wer Upper	Average	Aver	age	Norm.	Linear	Square				
limit	Angstrom	I	error	stat.	Chi**2	R-fac	R-fac	Rmeas	Rpim	CC1/2	CC*
50.	00 3.23	7052.9	216.6	166.1	1.593	0.034	0.117	0.043	0.026	0.942	0.985
3.	23 2.56	3943.3	243.3	226.3	1.403	0.061	0.058	0.077	0.046	0.991	0.998
2.	56 2.24	2919.6	321.9	315.4	1.505	0.099	0.101	0.128	0.080	0.968	0.992
2.	24 2.04	2634.7	384.7	380.1	1.418	0.123	0.123	0.161	0.103	0.950	0.987
2.	04 1.89	2324.2	416.1	412.6	1.160	0.141	0.132	0.188	0.123	0.946	0.986
1.	89 1.78	1894.2	422.0	419.7	1.211	0.173	0.167	0.235	0.157	0.905	0.975
1.	78 1.69	1596.5	407.5	405.8	1.154	0.194	0.185	0.261	0.173	0.894	0.972
1.	69 1.62	1284.7	376.6	375.4	1.211	0.222	0.211	0.294	0.191	0.871	0.965
1.	62 1.55	1003.5	335.2	334.4	1.187	0.263	0.253	0.348	0.225	0.814	0.947
1.	55 1.50	732.3	289.9	289.4	1.203	0.314	0.316	0.417	0.272	0.714	0.913
All ref	lections	2847.7	332.0	320.6	1.368	0.085	0.114	0.111	0.070		

Current status

- Programme runs on our Mac-Computers
- Support available from Eric Pellegrini at ILL
- Python scripting available but not rolled out to Andreas and me
- R-factors are still a bit worse than in the old denzo/HKL2000 case
- New programmer is needed to remove all remaining bugs and to do some more testing...
- Close contact and many discussions with this programmer is needed
- Ideas: To use McStas Calculations for improving the prediction of the centre of the predicted reflections
- Better absorption correction by using the convex hull of the crystal in correcting the Bragg intensities

Thanks

- Jonathan Fisher
- Andreas Ostermann
- Eric Pellegrini
- Laurent Chapon
- Joachim Wuttke

and you for the attention to my talk!!