000860666 001__ 860666
000860666 005__ 20210130000554.0
000860666 0247_ $$2doi$$a10.1088/1361-648X/aaff3b
000860666 0247_ $$2ISSN$$a0953-8984
000860666 0247_ $$2ISSN$$a1361-648X
000860666 0247_ $$2pmid$$apmid:30726191
000860666 0247_ $$2WOS$$aWOS:000458050600001
000860666 0247_ $$2altmetric$$aaltmetric:55119593
000860666 037__ $$aFZJ-2019-01333
000860666 082__ $$a530
000860666 1001_ $$00000-0002-1966-9025$$aDrissi, L. B.$$b0$$eCorresponding author
000860666 245__ $$aElectron–phonon dynamics in 2D carbon based-hybrids XC (X  =  Si, Ge, Sn)
000860666 260__ $$aBristol$$bIOP Publ.80390$$c2019
000860666 3367_ $$2DRIVER$$aarticle
000860666 3367_ $$2DataCite$$aOutput Types/Journal article
000860666 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549894641_26321
000860666 3367_ $$2BibTeX$$aARTICLE
000860666 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860666 3367_ $$00$$2EndNote$$aJournal Article
000860666 520__ $$aThe effect of the presence of electron–phonon (e–ph) coupling in the SiC, GeC and SnC hybrids is studied in the framework of the ab initio perturbation theory. The electronic bang gap thermal dependence reveals a normal monotonic decrease in the SiC and GeC semiconductors, whereas SnC exhibits an anomalous behavior. The electron line widths were evaluated and the contributions of acoustic and optical phonon modes to the imaginary part of the self-energy were determined. It has been found that the e–ph scattering rates are globally controlled by the out-of-plane acoustic transverse mode ZA in SiC while both ZA and ZO are overriding in GeC. In SnC, the out-of-plane transverse optical mode ZO is the most dominant. The relaxation lifetime of the photo-excited electrons shows that the thermalization of the hot carrier occurs at 90 fs, 100 fs and 120 fs in SiC, GeC and SnC, respectively. The present study properly describes the subpicosecond time scale after sunlight illumination using an approach that requires no empirical data. The results make the investigated structures suitable for providing low cost and high-performance optical communication and monitoring applications using 2D materials.
000860666 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000860666 536__ $$0G:(EU-Grant)681405$$aDynasore - Dynamical magnetic excitations with spin-orbit interaction in realistic nanostructures (681405)$$c681405$$fERC-2015-CoG$$x1
000860666 588__ $$aDataset connected to CrossRef
000860666 7001_ $$0P:(DE-HGF)0$$aKanga, N B-J$$b1
000860666 7001_ $$0P:(DE-Juel1)130805$$aLounis, S.$$b2
000860666 7001_ $$0P:(DE-HGF)0$$aDjeffal, F.$$b3
000860666 7001_ $$0P:(DE-HGF)0$$aHaddad, S.$$b4
000860666 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/aaff3b$$gVol. 31, no. 13, p. 135702 -$$n13$$p135702$$tJournal of physics / Condensed matter Condensed matter$$v31$$x1361-648X$$y2019
000860666 8564_ $$uhttps://juser.fz-juelich.de/record/860666/files/Drissi_2019_J._Phys.__Condens._Matter_31_135702.pdf$$yRestricted
000860666 8564_ $$uhttps://juser.fz-juelich.de/record/860666/files/Drissi_2019_J._Phys.__Condens._Matter_31_135702.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860666 909CO $$ooai:juser.fz-juelich.de:860666$$pec_fundedresources$$pVDB$$popenaire
000860666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000860666 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000860666 9141_ $$y2019
000860666 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860666 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860666 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860666 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860666 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000860666 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860666 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860666 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860666 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860666 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860666 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860666 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860666 920__ $$lyes
000860666 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860666 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000860666 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860666 980__ $$ajournal
000860666 980__ $$aVDB
000860666 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860666 980__ $$aI:(DE-Juel1)PGI-1-20110106
000860666 980__ $$aI:(DE-82)080009_20140620
000860666 980__ $$aUNRESTRICTED