000860667 001__ 860667
000860667 005__ 20210130000554.0
000860667 0247_ $$2doi$$a10.1007/978-3-319-42913-7_74-3
000860667 037__ $$aFZJ-2019-01334
000860667 1001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b0$$eCorresponding author
000860667 245__ $$aMany-Body Spin Excitations in Ferromagnets from First Principles
000860667 260__ $$aCham$$bSpringer International Publishing$$c2019
000860667 29510 $$aHandbook of Materials Modeling / Andreoni, Wanda (Editor) ; Cham : Springer International Publishing, 2019, Chapter 74-2 ; ISBN: 978-3-319-42913-7 ; doi:10.1007/978-3-319-42913-7
000860667 300__ $$a1-39
000860667 3367_ $$2ORCID$$aBOOK_CHAPTER
000860667 3367_ $$07$$2EndNote$$aBook Section
000860667 3367_ $$2DRIVER$$abookPart
000860667 3367_ $$2BibTeX$$aINBOOK
000860667 3367_ $$2DataCite$$aOutput Types/Book chapter
000860667 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1594812988_11589
000860667 520__ $$aElectronic spin excitations are low-energy excitations that influence the properties of magnetic materials substantially. Two types of spin excitations can be identified, single-particle Stoner excitations and collective spin-wave excitations. They can be treated on the same footing within many-body perturbation theory. In this theory, the collective spin excitations arise from the correlated motion of electron-hole pairs with opposite spins. We present the theory in detail and discuss several aspects of an implementation within the full-potential linearized augmented plane-wave method. The pair propagation is described by the transverse magnetic susceptibility, which we calculate from first principles employing the ladder approximation for the T matrix. The four-point T matrix is represented in a basis of Wannier functions. By using an auxiliary Wannier set with suitable Bloch character, the magnetic response function can be evaluated for arbitrary k points, allowing fine details of the spin-wave spectra to be studied. The energy of the acoustic spin-wave branch should vanish in the limit k →0, which is a manifestation of the Goldstone theorem. However, this condition is often violated in the calculated acoustic magnon dispersion, which can partly be traced back to the choice of the Green function. In fact, the numerical gap error is considerably reduced when a renormalized Green function is used. As an alternative simple correction scheme, we suggest an adjustment of the Kohn-Sham exchange splitting. We present spin excitation spectra for the elementary ferromagnets Fe, Co, and Ni as illustrative examples and compare to model calculations of the homogeneous electron gas
000860667 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000860667 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000860667 588__ $$aDataset connected to CrossRef Book
000860667 7001_ $$0P:(DE-Juel1)130855$$aMüller, Mathias C. T. D.$$b1
000860667 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
000860667 773__ $$a10.1007/978-3-319-42913-7_74-3
000860667 8564_ $$uhttps://juser.fz-juelich.de/record/860667/files/Friedrich2020_ReferenceWorkEntry_Many-BodySpinExcitationsInFerr.pdf
000860667 8564_ $$uhttps://juser.fz-juelich.de/record/860667/files/Friedrich2020_ReferenceWorkEntry_Many-BodySpinExcitationsInFerr.pdf?subformat=pdfa$$xpdfa
000860667 909CO $$ooai:juser.fz-juelich.de:860667$$pVDB
000860667 9141_ $$y2019
000860667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b0$$kFZJ
000860667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130855$$aForschungszentrum Jülich$$b1$$kFZJ
000860667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
000860667 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000860667 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000860667 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000860667 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000860667 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860667 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000860667 980__ $$acontb
000860667 980__ $$aVDB
000860667 980__ $$aI:(DE-Juel1)IAS-1-20090406
000860667 980__ $$aI:(DE-Juel1)PGI-1-20110106
000860667 980__ $$aI:(DE-82)080009_20140620
000860667 980__ $$aI:(DE-82)080012_20140620
000860667 980__ $$aUNRESTRICTED