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Vorführender
Präsentationsnotizen
Hello and welcome to my talk “reduction of sintering  temperature of 8ysz by iron doping fo a cost-efficient all ceramic sofc concept”. My name is Fabian grimm and im doing my phd at forschungszentrum jülich iek-1 within the group of Norbert menzler. Toegther with siri harboe im working on the bmwi funded kersolife 100 project.



KERSOLIFE 100 PROJECT
Publicly funded project (BMWi): Cooperation with industry and academic partners within Germany
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Goal:
Understanding and modelling of materials interactions and degradation mechanisms in fully ceramic SOFCs
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Vorführender
Präsentationsnotizen
Before starting my presentation – as a short overview – the kersolife 100 project is about the understanding and modelling of material interactions and degradation mechanis in full ceramic sofcs

The project is coordinated by bosch and counts 5 different project partners. within this project we – at iek 1 – are having a closer look on the cathode and electrolyte and their interactions with the respective adjacent layers
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LOW-COST INERT SUPPORTED SOLID OXIDE FUEL CELL 
(SOFC) MANUFACTURING ROUTE
Simplified manufacturing route: co-sintering: 

• Compromised sintering temperature <1300°C for all 
layers

• Materials of each layer adjusted to new processing 
route 
• Interactions during sintering cathode–adjacent 

layers
• Cathode microstructure/co-sintering properties
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CATHODE MATERIAL: LSM/8YSZ COMPOSITE
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Case study pre-evaluation LSM/8YSZ-oxide composite:
separated conduction pathways

Air 
O2/N2

Electrochemically active zone limited to 
triple phase boundaries

LSM =  (LaxSr1-x)yMnO3-d

8YSZ = Zr0.85Y0.15O1.925

Current collector (LSM)

½ O2

2e-

O2-

Electrolyte (8YSZ)

½ O2

O2-

LSM

8YSZ2e-

Advantages of LSM/YSZ composite:
• Good performance at Toperation (~800°C)
• Low reactivity to electrolyte [1]

• Nearly matching σT with electrolyte and support
• Co-sintering adhesion
Challenges/drawbacks:
• Microstructure crucial to functionality: 

• Tsinter(1080°C [2]<1300°C)  increased 
coarsening  fewer triple phase boundaries

• Lower electrochemical performance than mixed 
conductors/other composites
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Stochniol et al., J. of Am Cer. Soc., 1995. [2] Hanappel et al., Journal of power sources, 2005.



REACTION PHASES TEMPERATURE DEPENDENCY

LSM8020=(La0.8Sr0.2)0.98MnO3 
LSM6530=La0.65Sr0.3MnO3 
LSM5050=La0.5Sr0.5MnO3 

T below Treaction
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LSM8020

Treaction > Toperation │ Treaction <Tsintering
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EDX INVESTIGATIONS OF LAYER INTERACTIONS
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Co-sintered at <1300°C 5h, SEM image
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Porous
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+8YSZ
porous

230 µm

Current collector
La1-xSrxMnO3

porous
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No other observed diffusion, 
or effect of LSM stoichiometry

Semi-quantitative concentrations [1]

[1] Bruker's QUANTAX energy dispersive X-ray spectrometry



TEM INVESTIGATIONS OF LAYER INTERACTIONS

21 June 2018
Seite 7

Co-sintered at <1300°C 5h, SEM image

Electrolyte 8YSZ
dense

Support
Mg, Si, Zn

Porous

Cathode
La1-xSrxMnO3 
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porous

230 µm

Current collector
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porous

5 µm

5 µm

5 µm

Reaction layer: <5µm,
multiple phases, porous

No reaction 
layers

Cut-out lamellas for TEM (Dark Field Images)
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GFE, RWTH Aachen



INTERACTION CATHODE – ELECTROLYTE (STEM)
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Detected:

5 µ m

[1] Menzler et al., Journal of Power Sources, 2018. 

Cathode
(La0.8Sr0.2)0.98MnO3 
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dense

Cu (from grid)

Zr

YMn Y Zr

Zr

Y
O

• Mn diffuses to 8YSZ electrolyte bulk 
• Possible: MnOX formation  cracking, delamination [1] 

Introduction Chemical 
interactions Microstructure Co-sintering Summary
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REQUESTED MICROSTRUCTURAL PARAMETERS
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Best performance found at 40% porosity [1] Current collector: larger particle size  better 
performance [2]

For (La1-xSrx)yMnO3 + 8YSZ cathodes

[1] Tsai et al., Solid state Ionics, 1997. [2] Hanappel et al., Journal of power sources, 2005.

La0.65Sr0.3MnO3 + 8YSZ cathodes, data extracted from [2]La0.8Sr0.2MnO3+8YSZ cathodes, data extracted from [1]

Air O2 ε

22%

29%

40%
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IMPACT OF PARTICLE SIZE AND Sr-CONTENT ON 
SINTERED MICROSTRUCTURE (La1-xSrx)yMnO3
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EVALUATION OF MICROSTRUCTURAL PARAMETERS
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Co-sintered at <1300°C 5h
Porosity: image analysis 
Particle size d50: LA-950 V2 Retsch Horiba

For (La1-xSrx)yMnO3

[1] Roosmalen et al., Solid State Ionics, 1993.  [2] Wolfenstine et al., Solid State Ionics, 1996. 
[3] Wolfenstine et al., Journal of Materials Research, 1996. [4]  Palcut, Journal of  Physical Chemistry C, 2007. 
[5] Takeda et al., Material Research Bulletin, 1991.

• Porosity of ≥40% at co-sintering <1300°C with:
• various combinations of: 

• Sr-content 
• particle size
• pore formers

• Sintered porosity increases with Sr-content 
(x≤0.5) [1, 2]

• Sintering mass transport: La/Sr- lattice 
vacancy diffusion controlled [3, 4]

• La/Sr- lattice vacancies decrease with 
increasing Sr-content [2, 5]

• Results here mostly follow trend

requested
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FREE SINTERING: LSM+8YSZ CATHODE, SUPPORT 
SUBSTRATE
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Free sintering strain behaviour depends on:
• Powder (paste) properties
• Temperature 

Material optimization:
• Matching of time and temperature dependant 

strain rate ̇𝜖𝜖T or
• In some cases tailoring of ̇𝜖𝜖T:

• Forging
• Retiring of adjacent layer

• Adaptation of rheological properties

L0

LSM / LSM+8YSZ

ΔL/2 ΔL/2

Forsterite support substrate

True strain rate: ̇𝜖𝜖𝑇𝑇 = 𝜕𝜕
𝜕𝜕𝑡𝑡

log(1 + ∆𝐿𝐿/𝐿𝐿0)
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EFFECT OF STRAIN RATE ON MACROSCOPIC DIMENSION
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• LSM8020: ̇𝜖𝜖𝑇𝑇 too high LSM6530: ̇𝜖𝜖𝑇𝑇 too low:  
alter particle size thus sinter activity
add pore former thus lower sintering 
viscosity

Adapting the sintering behavior 
 dimensional control 
+ Ensure suitable microstructure

Strain rate (dilatometer Netsch 402C) Co-sintered substrate and LSM
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X
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√
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√
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SUMMARY AND OUTLOOK
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• LSM/8YSZ cathodes remain promising for low-cost SOFC design:
• Interactions substrate-cathode during co-sintering:

• Only thin, porous reaction layers: <Tsintering │ >Toperation

• Zn diffuses to cathode (all stoichiometries), but not to electrochemically active zone 
• Mn diffuses to support and electrolyte, problematic for long-term operation?

• Microstructure: Requested current collector porosity reached at Tsintering by: 
• Increasing Sr-content in LSM
• Increasing particle size

• Adding pore formers 
• Macroscopic: Defect-free co-sintering obtained by adapting sintering behavior
• Outlook: Influence of findings on cell performance? Long term behaviour?
• Further investigate Mn-diffusion to electrolyte
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EFFECT OF PASTE PROPERTIES ON SINTERED CATHODE 
MICROSTRUCTURE (La1-xSrx)yMnO3+8YSZ
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• Goal: maximize triple phase boundaries (fine particle size), 40% porosity, P 
• Fine porosity improved with pore formers/particle size
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