000860679 001__ 860679
000860679 005__ 20210130000556.0
000860679 0247_ $$2doi$$a10.1016/j.advwatres.2018.10.023
000860679 0247_ $$2ISSN$$a0177-3569
000860679 0247_ $$2ISSN$$a0309-1708
000860679 0247_ $$2ISSN$$a0341-194X
000860679 0247_ $$2ISSN$$a0341-194x
000860679 0247_ $$2ISSN$$a0341-1958
000860679 0247_ $$2ISSN$$a1872-9657
000860679 0247_ $$2WOS$$aWOS:000450094200027
000860679 037__ $$aFZJ-2019-01344
000860679 041__ $$aEnglish
000860679 082__ $$a550
000860679 1001_ $$0P:(DE-HGF)0$$aChaudhuri, A.$$b0$$eCorresponding author
000860679 245__ $$aIterative filter based estimation of fully 3D heterogeneous fields of permeability and Mualem-van Genuchten parameters
000860679 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000860679 3367_ $$2DRIVER$$aarticle
000860679 3367_ $$2DataCite$$aOutput Types/Journal article
000860679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549972347_26323
000860679 3367_ $$2BibTeX$$aARTICLE
000860679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860679 3367_ $$00$$2EndNote$$aJournal Article
000860679 520__ $$aThe accurate modeling of flow and transport in the vadose zone for agricultural and environmental applications requires knowledge about soil parameters. Soil parameters vary in space depending on soil texture and structure. In the present synthetic study we considered spatial variation of permeability (k), inverse of capillary entry pressure head (αVG) and exponent (n) of the Mualem-van Genuchten model. The iterative Ensemble Kalman filter (IEnKF) can estimate the spatially variable soil parameters if measurements of water saturation at different locations and times are available. We used as input daily precipitation data from the Berambadi catchment (southern India). We first considered that the parameters vary horizontally but are constant in the vertical direction. In this case log (k) and log (αVG) can be estimated satisfactorily with 30%–40% reduction of RMSE (compared to open loop runs), if the initial guess of the spatial correlation lengths of the heterogeneous fields is equal to or larger than the unknown, true values. The estimation of exponent n is poorer as the reduction of RMSE is just 20%. If vertical heterogeneity of the parameters is considered the estimation of log (k) and log (αVG) is only improved for the upper 1.5 m and estimation of n is not improved. We also demonstrate that the estimation problem can be simplified when flow in the unsaturated zone is predominantly vertical. If in this case soil hydraulic parameters are estimated with IEnKF at measurement locations and afterwards interpolated with kriging, results are produced with a similar quality as with 3D-IEnKF.
000860679 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000860679 588__ $$aDataset connected to CrossRef
000860679 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1
000860679 7001_ $$0P:(DE-HGF)0$$aSekhar, M.$$b2
000860679 773__ $$0PERI:(DE-600)2023320-6$$a10.1016/j.advwatres.2018.10.023$$gVol. 122, p. 340 - 354$$p340 - 354$$tAdvances in water resources$$v122$$x0309-1708$$y2018
000860679 8564_ $$uhttps://juser.fz-juelich.de/record/860679/files/1-s2.0-S0309170818303762-main.pdf$$yRestricted
000860679 8564_ $$uhttps://juser.fz-juelich.de/record/860679/files/1-s2.0-S0309170818303762-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860679 909CO $$ooai:juser.fz-juelich.de:860679$$pVDB:Earth_Environment$$pVDB
000860679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000860679 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000860679 9141_ $$y2019
000860679 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860679 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV WATER RESOUR : 2017
000860679 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860679 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860679 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860679 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860679 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860679 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860679 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860679 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860679 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860679 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860679 920__ $$lyes
000860679 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000860679 980__ $$ajournal
000860679 980__ $$aVDB
000860679 980__ $$aI:(DE-Juel1)IBG-3-20101118
000860679 980__ $$aUNRESTRICTED