001     860679
005     20210130000556.0
024 7 _ |a 10.1016/j.advwatres.2018.10.023
|2 doi
024 7 _ |a 0177-3569
|2 ISSN
024 7 _ |a 0309-1708
|2 ISSN
024 7 _ |a 0341-194X
|2 ISSN
024 7 _ |a 0341-194x
|2 ISSN
024 7 _ |a 0341-1958
|2 ISSN
024 7 _ |a 1872-9657
|2 ISSN
024 7 _ |a WOS:000450094200027
|2 WOS
037 _ _ |a FZJ-2019-01344
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Chaudhuri, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Iterative filter based estimation of fully 3D heterogeneous fields of permeability and Mualem-van Genuchten parameters
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549972347_26323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The accurate modeling of flow and transport in the vadose zone for agricultural and environmental applications requires knowledge about soil parameters. Soil parameters vary in space depending on soil texture and structure. In the present synthetic study we considered spatial variation of permeability (k), inverse of capillary entry pressure head (αVG) and exponent (n) of the Mualem-van Genuchten model. The iterative Ensemble Kalman filter (IEnKF) can estimate the spatially variable soil parameters if measurements of water saturation at different locations and times are available. We used as input daily precipitation data from the Berambadi catchment (southern India). We first considered that the parameters vary horizontally but are constant in the vertical direction. In this case log (k) and log (αVG) can be estimated satisfactorily with 30%–40% reduction of RMSE (compared to open loop runs), if the initial guess of the spatial correlation lengths of the heterogeneous fields is equal to or larger than the unknown, true values. The estimation of exponent n is poorer as the reduction of RMSE is just 20%. If vertical heterogeneity of the parameters is considered the estimation of log (k) and log (αVG) is only improved for the upper 1.5 m and estimation of n is not improved. We also demonstrate that the estimation problem can be simplified when flow in the unsaturated zone is predominantly vertical. If in this case soil hydraulic parameters are estimated with IEnKF at measurement locations and afterwards interpolated with kriging, results are produced with a similar quality as with 3D-IEnKF.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
700 1 _ |a Sekhar, M.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.advwatres.2018.10.023
|g Vol. 122, p. 340 - 354
|0 PERI:(DE-600)2023320-6
|p 340 - 354
|t Advances in water resources
|v 122
|y 2018
|x 0309-1708
856 4 _ |u https://juser.fz-juelich.de/record/860679/files/1-s2.0-S0309170818303762-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860679/files/1-s2.0-S0309170818303762-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860679
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV WATER RESOUR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21