000860694 001__ 860694
000860694 005__ 20240711101453.0
000860694 0247_ $$2doi$$a10.1016/j.renene.2019.07.045
000860694 0247_ $$2ISSN$$a0960-1481
000860694 0247_ $$2ISSN$$a1879-0682
000860694 0247_ $$2Handle$$a2128/22521
000860694 0247_ $$2altmetric$$aaltmetric:63407072
000860694 0247_ $$2WOS$$aWOS:000506910000014
000860694 037__ $$aFZJ-2019-01359
000860694 082__ $$a620
000860694 1001_ $$0P:(DE-HGF)0$$aMoumin, Gkiokchan$$b0$$eCorresponding author
000860694 245__ $$aCO2 emission reduction in the cement industry by using a solar calciner
000860694 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000860694 3367_ $$2DRIVER$$aarticle
000860694 3367_ $$2DataCite$$aOutput Types/Journal article
000860694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563865962_16749
000860694 3367_ $$2BibTeX$$aARTICLE
000860694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860694 3367_ $$00$$2EndNote$$aJournal Article
000860694 520__ $$aThis paper discusses the techno-economic potential of solar thermal calciner technology in the cement industry. On the basis of a solar calciner test rig built at the German Aerospace Center (DLR), a solar cement plant is designed and the heliostat field is calculated. The energy balance in the solar calciner is analyzed and different scenarios are investigated. The achievable CO2 avoidance rate for solar cement plants for the considered scenarios lies between 14 and 17%. CO2 avoidance costs are 118 EUR/t in a conservative base case and can be as low as 74 EUR/t depending on the chosen direct normal irradiation (DNI), reactor efficiency and solar multiple. A strong impact of the reactor efficiency on the costs was shown. Increasing the reactor efficiency by 15% points reduces the avoidance costs by 26%. Additionally, the CO2 emission reduction potential is calculated for Spain through 2050. It was found that for solar calciners, replacing the fossil fuel in the conventional calciner, emission reductions in the Spanish cement industry range between 2 and 7% by 2050. Implementation of a controlled sequestration of the CO2 in the solar calciner shows a big impact and emission reductions from 8 to 28% can be achieved.
000860694 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000860694 588__ $$aDataset connected to CrossRef
000860694 7001_ $$0P:(DE-Juel1)173988$$aRyssel, Maximilian$$b1
000860694 7001_ $$0P:(DE-Juel1)129950$$aZhao, Li$$b2$$ufzj
000860694 7001_ $$0P:(DE-Juel1)130471$$aMarkewitz, Peter$$b3$$ufzj
000860694 7001_ $$0P:(DE-HGF)0$$aSattler, Christian$$b4
000860694 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5$$ufzj
000860694 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$eCorresponding author$$ufzj
000860694 773__ $$0PERI:(DE-600)2001449-1$$a10.1016/j.renene.2019.07.045$$gVol. 145, p. 1578 - 1596$$p1578 - 1596$$tRenewable energy$$v145$$x0960-1481$$y2020
000860694 8564_ $$uhttps://juser.fz-juelich.de/record/860694/files/1-s2.0-S0960148119310651-main.pdf$$yOpenAccess
000860694 8564_ $$uhttps://juser.fz-juelich.de/record/860694/files/1-s2.0-S0960148119310651-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860694 909CO $$ooai:juser.fz-juelich.de:860694$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129950$$aForschungszentrum Jülich$$b2$$kFZJ
000860694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130471$$aForschungszentrum Jülich$$b3$$kFZJ
000860694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000860694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000860694 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000860694 9141_ $$y2020
000860694 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860694 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860694 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860694 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000860694 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRENEW ENERG : 2017
000860694 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860694 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860694 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860694 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860694 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860694 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860694 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860694 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860694 920__ $$lyes
000860694 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000860694 9801_ $$aFullTexts
000860694 980__ $$ajournal
000860694 980__ $$aVDB
000860694 980__ $$aUNRESTRICTED
000860694 980__ $$aI:(DE-Juel1)IEK-3-20101013
000860694 981__ $$aI:(DE-Juel1)ICE-2-20101013