001     860694
005     20240711101453.0
024 7 _ |a 10.1016/j.renene.2019.07.045
|2 doi
024 7 _ |a 0960-1481
|2 ISSN
024 7 _ |a 1879-0682
|2 ISSN
024 7 _ |a 2128/22521
|2 Handle
024 7 _ |a altmetric:63407072
|2 altmetric
024 7 _ |a WOS:000506910000014
|2 WOS
037 _ _ |a FZJ-2019-01359
082 _ _ |a 620
100 1 _ |a Moumin, Gkiokchan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a CO2 emission reduction in the cement industry by using a solar calciner
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1563865962_16749
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper discusses the techno-economic potential of solar thermal calciner technology in the cement industry. On the basis of a solar calciner test rig built at the German Aerospace Center (DLR), a solar cement plant is designed and the heliostat field is calculated. The energy balance in the solar calciner is analyzed and different scenarios are investigated. The achievable CO2 avoidance rate for solar cement plants for the considered scenarios lies between 14 and 17%. CO2 avoidance costs are 118 EUR/t in a conservative base case and can be as low as 74 EUR/t depending on the chosen direct normal irradiation (DNI), reactor efficiency and solar multiple. A strong impact of the reactor efficiency on the costs was shown. Increasing the reactor efficiency by 15% points reduces the avoidance costs by 26%. Additionally, the CO2 emission reduction potential is calculated for Spain through 2050. It was found that for solar calciners, replacing the fossil fuel in the conventional calciner, emission reductions in the Spanish cement industry range between 2 and 7% by 2050. Implementation of a controlled sequestration of the CO2 in the solar calciner shows a big impact and emission reductions from 8 to 28% can be achieved.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ryssel, Maximilian
|0 P:(DE-Juel1)173988
|b 1
700 1 _ |a Zhao, Li
|0 P:(DE-Juel1)129950
|b 2
|u fzj
700 1 _ |a Markewitz, Peter
|0 P:(DE-Juel1)130471
|b 3
|u fzj
700 1 _ |a Sattler, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 5
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.renene.2019.07.045
|g Vol. 145, p. 1578 - 1596
|0 PERI:(DE-600)2001449-1
|p 1578 - 1596
|t Renewable energy
|v 145
|y 2020
|x 0960-1481
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/860694/files/1-s2.0-S0960148119310651-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/860694/files/1-s2.0-S0960148119310651-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:860694
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RENEW ENERG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21