000860700 001__ 860700
000860700 005__ 20210130000602.0
000860700 0247_ $$2doi$$a10.1016/j.cam.2019.01.040
000860700 0247_ $$2ISSN$$a0377-0427
000860700 0247_ $$2ISSN$$a1879-1778
000860700 0247_ $$2Handle$$a2128/21729
000860700 0247_ $$2WOS$$aWOS:000463693100002
000860700 037__ $$aFZJ-2019-01365
000860700 041__ $$aEnglish
000860700 082__ $$a510
000860700 1001_ $$00000-0001-5118-5576$$aMartín-Vaquero, J.$$b0$$eCorresponding author
000860700 245__ $$aESERK5: A fifth-order extrapolated stabilized explicit Runge–Kutta method
000860700 260__ $$aAmsterdam$$bNorth-Holland$$c2019
000860700 3367_ $$2DRIVER$$aarticle
000860700 3367_ $$2DataCite$$aOutput Types/Journal article
000860700 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550846520_14053
000860700 3367_ $$2BibTeX$$aARTICLE
000860700 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860700 3367_ $$00$$2EndNote$$aJournal Article
000860700 520__ $$aA new algorithm is developed and analyzed for multi-dimensional non-linear parabolic partial differential equations (PDEs) which are semi-discretized in the spatial variables leading to a system of ordinary differential equations (ODEs). It is based on fifth-order extrapolated stabilized explicit Runge–Kutta schemes (ESERK). They are explicit methods, and therefore it is not necessary to employ complicated software for linear or non-linear system of equations. Additionally, they have extended stability regions along the negative real semi-axis, hence they can be considered to solve stiff problems coming from very common diffusion or reaction–diffusion problems.Previously, only lower-order codes (up to fourth-order) have been constructed and made available in the scientific literature. However, at the same time, higher-order codes were demonstrated to be very efficient to solve equations where it is necessary to have a high precision or they have transient zones that are very severe, and where functions change very fast. The new schemes allow changing the step length very easily and with a very small computational cost. Thus, a variable step length, with variable number of stages algorithm is constructed and compared with good numerical results in relation to other well-known ODE solvers.
000860700 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000860700 588__ $$aDataset connected to CrossRef
000860700 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
000860700 773__ $$0PERI:(DE-600)1468806-2$$a10.1016/j.cam.2019.01.040$$gp. S0377042719300561$$p22-36$$tJournal of computational and applied mathematics$$v356$$x0377-0427$$y2019
000860700 8564_ $$uhttps://juser.fz-juelich.de/record/860700/files/Preprint.pdf$$yOpenAccess
000860700 8564_ $$uhttps://juser.fz-juelich.de/record/860700/files/Preprint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860700 909CO $$ooai:juser.fz-juelich.de:860700$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860700 9101_ $$0I:(DE-HGF)0$$60000-0001-5118-5576$$a Universidad de Salamanca$$b0
000860700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
000860700 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000860700 9141_ $$y2019
000860700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860700 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860700 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COMPUT APPL MATH : 2017
000860700 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000860700 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860700 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860700 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860700 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860700 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860700 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860700 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860700 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860700 920__ $$lno
000860700 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000860700 980__ $$ajournal
000860700 980__ $$aVDB
000860700 980__ $$aUNRESTRICTED
000860700 980__ $$aI:(DE-Juel1)JSC-20090406
000860700 9801_ $$aFullTexts