001     860700
005     20210130000602.0
024 7 _ |a 10.1016/j.cam.2019.01.040
|2 doi
024 7 _ |a 0377-0427
|2 ISSN
024 7 _ |a 1879-1778
|2 ISSN
024 7 _ |a 2128/21729
|2 Handle
024 7 _ |a WOS:000463693100002
|2 WOS
037 _ _ |a FZJ-2019-01365
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Martín-Vaquero, J.
|0 0000-0001-5118-5576
|b 0
|e Corresponding author
245 _ _ |a ESERK5: A fifth-order extrapolated stabilized explicit Runge–Kutta method
260 _ _ |a Amsterdam
|c 2019
|b North-Holland
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550846520_14053
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A new algorithm is developed and analyzed for multi-dimensional non-linear parabolic partial differential equations (PDEs) which are semi-discretized in the spatial variables leading to a system of ordinary differential equations (ODEs). It is based on fifth-order extrapolated stabilized explicit Runge–Kutta schemes (ESERK). They are explicit methods, and therefore it is not necessary to employ complicated software for linear or non-linear system of equations. Additionally, they have extended stability regions along the negative real semi-axis, hence they can be considered to solve stiff problems coming from very common diffusion or reaction–diffusion problems.Previously, only lower-order codes (up to fourth-order) have been constructed and made available in the scientific literature. However, at the same time, higher-order codes were demonstrated to be very efficient to solve equations where it is necessary to have a high precision or they have transient zones that are very severe, and where functions change very fast. The new schemes allow changing the step length very easily and with a very small computational cost. Thus, a variable step length, with variable number of stages algorithm is constructed and compared with good numerical results in relation to other well-known ODE solvers.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 1
|u fzj
773 _ _ |a 10.1016/j.cam.2019.01.040
|g p. S0377042719300561
|0 PERI:(DE-600)1468806-2
|p 22-36
|t Journal of computational and applied mathematics
|v 356
|y 2019
|x 0377-0427
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/860700/files/Preprint.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/860700/files/Preprint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:860700
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Universidad de Salamanca
|0 I:(DE-HGF)0
|b 0
|6 0000-0001-5118-5576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169421
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J COMPUT APPL MATH : 2017
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21