
ESERK5: a Fifth-Order Extrapolated Stabilized

Explicit Runge-Kutta Method

J. Mart́ın-Vaqueroa,∗, A. Kleefeldb

aETS Ingenieros industriales, Universidad de Salamanca. E37700, Bejar, Spain
b Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre.

Wilhelm-Johnen-Straße, 52425 Jülich, Germany

Abstract

A new algorithm is developed and analyzed for multi-dimensional non-linear
parabolic partial differential equations (PDEs) which are semi-discretized in the
spatial variables leading to a system of ordinary differential equations (ODEs).
It is based on fifth-order extrapolated stabilized explicit Runge-Kutta schemes
(ESERK). They are explicit methods, and therefore it is not necessary to employ
complicated software for linear or non-linear system of equations. Additionally,
they have extended stability regions along the negative real semi-axis, hence they
can be considered to solve stiff problems coming from very common diffusion or
reaction-diffusion problems.

Previously, only lower-order codes (up to fourth-order) have been constructed
and made available in the scientific literature. However, at the same time,
higher-order codes were demonstrated to be very efficient to solve equations
where it is necessary to have a high precision or they have transient zones that
are very severe, and where functions change very fast. The new schemes al-
low changing the step length very easily and with a very small computational
cost. Thus, a variable step length, with variable number of stages algorithm
is constructed and compared with good numerical results in relation to other
well-known ODE solvers.

Keywords: Higher-order schemes, Multi-dimensional partial differential
equations, Stabilized explicit Runge-Kutta methods, Variable-step length ODE
solvers

1. Introduction

In this manuscript, we explain how to develop fifth-order extrapolated stabi-
lized explicit Runge-Kutta methods (ESERK) to solve systems of ODEs coming
from multi-dimensional non-linear partial differential equations (PDEs). More

∗Corresponding author
Email addresses: jesmarva@usal.es (J. Mart́ın-Vaquero), a.kleefeld@fz-juelich.de

(A. Kleefeld)

Preprint submitted to Elsevier September 17, 2018



precisely, we want to solve efficiently parabolic equations, usually with reaction
and diffusion terms in the equations after semi-discretization in space. Due
to reaction terms, solutions may vary fast in some regions, and therefore it is
necessary to utilize algorithms with high accuracy [2, 13, 14, 15].

This work is not only an extension of the fourth-order extrapolated stabilized
explicit Runge-Kutta methods (ESERK4) by [31]. The new contribution of this
paper is the derivation of necessary stability conditions for a fifth-order algo-
rithm. In sum, 49 fifth-order algorithms are constructed for different stages.
For this purpose, roughly 15000 coefficients have been obtained for the first
time. These algorithm are combined in a code named ESERK5 (fifth-order
extrapolated stabilized explicit Runge-Kutta methods) with variable step size,
which is freely available at Github (https://github.com/kleefeld80/ESERK5).
Additionally, ESERK5 provides extended stability regions, including some algo-
rithms which are stable in [−ls, 0] with ls bigger than 106, which is clearly bigger
than other similar methods such as DUMKA or ROCK (around 40 times bigger
than with ROCK4). Therefore, the new library might be a much more stable
and accurate competitive alternative to such existing libraries, since fifth-order
libraries do not exist with extended stability regions. ESERK5 is also shown to
provide stable and accurate numerical examples for well-known testing scenarios
with a very good performance. There is a need for new higher-order algorithms
because some PDEs require very accurate solutions, and it has been demon-
strate that in some phases “a high order is advocated” see [20]. This is also a
small step to provide a possibility to combine this library with Radau5 like it
has been done in [15] with ROCK4 and Radau5, but for fifth-order schemes now.
Additionally, it is clear that the new code ESERK5 is able to obtain faster more
accurate solutions than the previous code ESERK4, and therefore it might be
interesting developing other ESERK codes, with different order of convergence,
and combine all of them in one script, able to change the order. However, for
this purpose, it is necessary to continue with the work begun in [31] and the
current work on ESERK5.

These types of problems are common in a large amount of applications such
as atmospheric phenomena, biology, chemistry, combustion problems, financial
mathematics, fluid mechanics, industrial engineering, laser modelling, malware
propagation, medicine, molecular dynamics, nuclear kinetics, etc., see [3, 6, 12,
13, 14, 15, 17, 20, 30, 43], to mention a few.

They are non-linear PDEs where the non-linearity cannot be neglected be-
cause this would affect the solution of these problems. Hence, habitually these
partial differential equations are transformed into systems of ordinary differen-
tial equations (ODEs), this is done through spatial discretizations. Although
functions and solutions are frequently smooth, in many of these cases, equations
are usually very stiff. Thus, traditional explicit methods are computationally
very expensive (due to limitations of the length step). On the other hand,
traditional implicit stable Runge-Kutta or BDF schemes (as [11, 17, 18]) have
important difficulties to solve two- and three-dimensional PDEs, since these
non-linear systems of ODEs have many unknowns.

Other types of algorithms can be considered to approximate these large

2



systems of ODEs such as: exponential fitting or ETD schemes [9, 19, 21, 24, 32]
or implicit-explicit algorithms (for example [8, 34]) in order to obtain accurate
solutions with lower computational cost. In all these cases explained above it
is necessary to approximate exponentials of very large matrices or solving a
large number of linear or even non-linear equations at each step. Therefore,
these codes are very expensive or there might be important memory demanding
problems.

However, very often, the eigenvalues of the Jacobian matrix are known to
be in a long narrow strip along the negative real axis. This situation typically
arises when discretizing parabolic equations with dominating diffusion and/or
reaction terms.

In this case, Runge-Kutta-Chebyshev, stabilized explicit Runge-Kutta (SERK)
or similar methods were demonstrated to be very efficient, see [2, 20, 22, 27, 33,
39, 40, 41]. They are explicit algorithms where it is necessary to evaluate the
function nt times per step, but the stability region is O(n2

t ). Hence, the compu-
tational cost is O(nt) times lower than for a traditional explicit algorithm. Since
these methods are explicit, the computational cost is given by the number of
function evaluations, it is not necessary to solve any linear or non-linear system
of equations.

Therefore, they are especially well-suited for the method of lines (MOL)
discretizations of parabolic non-linear multi-dimensional PDEs (where implicit
methods are very expensive). However, they can be used only to solve problems
where all eigenvalues of the Jacobian are negative real numbers or they are close
to the negative real axis.

So far, stabilized explicit RK methods have been built only up to fourth-
order. Hence, similar higher-order methods might be interesting for problems
where it is necessary to obtain high precision. Additionally, they could be
combined with Radau5, for example, and this is interesting to obtain high-
accurate implicit-explicit methods for reaction-diffusion problems. There are
some papers on fourth-order ROCK4 schemes combined with Radau5 for several
problems [13, 14, 15]. Recent work in the direction of deriving higher-order codes
using factorized Runge-Kutta-Chebyshev (FRKC) polynomials, or Runge-Kutta
with Gegenbauer polynomials has also been done by O’Sullivan (see [35, 36].

Additionally, our final project is creating a software based on extrapolated
stabilized explicit Runge-Kutta methods similar to ODEX (see [23] for a paral-
lelized version), that allows changing the order, the number of stages, and the
length step. Thus, we will need to create a series of schemes with different order
and number of stages and combine them in one script.

In [31], the general theory to obtain extrapolated stabilized explicit Runge-
Kutta methods was proposed, but only fourth-order schemes were derived. It
was also briefly explained that, once first-order methods with some specific and
necessary stability conditions are derived, then it is possible to build second-,
third- and fifth-order algorithms in a similar way (p. 143). However, none
of these coefficients were obtained, except for the fourth-order codes. In this
manuscript, it is now explained which are these necessary stability conditions
for fifth-order algorithms, and we give details about how fifth-order stabilized

3



explicit Runge-Kutta methods are derived in Section 3. We built algorithms for
s = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50,
60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,
1200, 1400, 1600, 1800, 2000.

In the next section, we show how to develop extrapolated explicit schemes
and also which are the stability properties that we are looking for these explicit
methods. Later, the fixed step algorithms for ESERK5 are built, and we also
show their properties. With these methods, in Section 4, the variable step length
code is developed. It is tested in Section 5, comparing the new algorithm with
other excellent ODE solvers such us RKC, ROCK2, IRKC, and PIROCK. We
focus our numerical experiments on reaction-diffusion equations of the form

ut = ∆u+ g(t, u),

where g(t, u) is a non-linear reaction term. Finally, some conclusions and future
goals are addressed.

2. Extrapolated explicit methods

There have been several types of stabilized explicit Runge-Kutta methods
(also called Runge-Kutta-Chebyshev) in the scientific literature. And some
of them have difficulties with problems where any of the eigenvalues are very
large, especially the schemes with order higher than two. Actually, in [28],
Lebedev and Finogenov explained that this kind of algorithms have two kind
of problems: (i) internal stability and (ii) propagation of errors. They tried to
solve them by finding special permutation of the roots of the polynomials. This
procedure reduces this problem when the order of the polynomial is low. These
permutations are also briefly explained by Hairer and Wanner [17]. On page 34,
they stated that the propagation of errors should be as small as possible.

Thus, Sommeijer, Shampine, and Verwer developed their Runge-Kutta-Chebyshev
(RKC) methods in [40]. These schemes show an important improvement to min-
imize these internal instability and propagation errors. They used a three-term
recurrence procedure to build their algorithms, but their RKC schemes are only
second-order in time.

Later, Abdulle used a similar three-term recurrence scheme combined with
a composition procedure to build ROCK2 (second-order) and ROCK4 (fourth-
order) methods. These codes are excellent for many mildly stiff ODEs [2, 4] com-
ing from spatial discretizations of non-linear PDEs. However, they have some
difficulties with the amplification of the errors in the last two (with ROCK2) or
four (with ROCK4) stages of the method, as it is explained in [1], in §4.4 or in
[20], in §5.2. Actually, Hundsdorfer and Verwer reported amplification factors
of O(109) for ROCK2 with 200 stages in [20].

Recently, in [35], O’Sullivan derived higher-order factorized Runge-Kutta-
Chebyshev schemes. They have good internal stability properties, but he is
currently working on improving the codes with order higher than two. A guide
and some scripts for the second-order methods can be found on the web page

4



www.maths.dit.ie/frkc. As far as we know he is working on codes that are
fourth- and sixth-order in time.

Some Runge-Kutta-Chebyshev methods have been obtained using Richard-
son extrapolation by various authors, see [7, 37, 38] and references therein, but
these methods are only second-order.

Some stabilized explicit Runge-Kutta algorithms (SERK) were derived in
[25, 26, 29, 30]. They are also based on three-term recurrence formulae. These
SERK schemes are only second-order. However, they can be developed from

polynomials whose first terms are 1+z+ z2

2 + z3

3! +
z4

4! + . . ., hence they might be
useful to build higher-order schemes. In [31], SERK schemes were combined with
extrapolation techniques to build a fourth-order ESERK scheme (ESERK4). So
far, only fourth- or lower-order methods were constructed, to the best of our
knowledge. In this manuscript, we are illustrating how to construct a method
that is of fifth-order in time, in a similar way as in [31] ESERK4 was derived.
Now, we will show the main ingredients of this idea, and later we will analyze
the new schemes.

In Section 3, we first calculate the first-order SERK method. Later, we
compute the numerical results of the initial value problem (IVP) by performing
ni steps with step size hi to obtain yhi

(x0 + h) := Si,1 from y(x0). We do these
calculations with this method for various values h1 > h2 > h3 > . . . (taking
hi = h/ni, ni being a positive integer). Using the Aitken-Neville algorithm:

Sj,k+1 = Sj,k +
Sj,k − Sj−1,k

(nj − nj−k)− 1
,

higher-order schemes might be derived.
For example, the fifth-order method can be computed as:

S5,5 =
S1,1 − 64S2,1 + 486S3,1 − 1024S4,1 + 625S5,1

24
=

=
625yh/5(x0 + h)− 1024yh/4(x0 + h)

24
+

+
486yh/3(x0 + h)− 64yh/2(x0 + h) + yh(x0 + h)

24
.

Since we need s stages to obtain the first-order stabilized explicit Runge-
Kutta approximation (S1,1), the total number of function evaluations of the
fifth-order scheme is nt = 15s (there are 15s stages per step). Since we will
require special stability conditions, we will utilize the well-known idea of Cheby-
shev polynomials to obtain them.

2.1. Shifted Chebyshev polynomials

To obtain the first-order schemes we can use Chebyshev polynomials of the
first kind of order s (s = stages) which are defined by the recursion:

T0(x) = 1, T1(x) = x, Ts(x) = 2xTs−1(x)− Ts−2(x).

5



Thus, if we consider

Rs(z) =
Ts(w0,s + w1,sz)

Ts(w0,s)
, w0,s = 1 +

µ

s2
, w1,s =

Ts(w0,s)

T ′
s(w0,s)

, (1)

(s being the number of stages of the first-order method, z is a function of x
depending on this values s) we obtain polynomials oscillating between −λ and
λ in a region which is O(s2), and Rs(z) = 1 + z +O(z2) (as it is explained, for
example in [17]). The parameter µ is a number precisely chosen to obtain that
|Rs(z)| < λ. Later, we will calculate λ as 0.277923 and µ = 192/100.

As it was explained in [31], in our case, if we denote the polynomial of the
fifth-order extrapolated method as P5s(z), then:

P5s(z) =
Rs(z)−64(Rs(z/2))

2+486(Rs(z/3))
3−1024(Rs(z/4))

4+625(Rs(z/5))
5

24 .
(2)

Since
|P5s(z)| ≤

|Rs(z)|+ 64|Rs(z/2)|2 + 486|Rs(z/3)|3 + 1024|Rs(z/4)|4 + 625|Rs(z/5)|5
24

,

we can take λ ≤ 0.277923 to guarantee that |P5s(z)| ≤ 0.95. We have taken
0.95 as usual in these Runge–Kutta–Chebyshev (or stabilized explicit Runge–
Kutta methods); we might have chosen 0.99 (always < 1 for stability reasons,
see [17]) in this case, because the stability regions of P5s(z) are wider than
those of Rs(z), however differences are small (in the length of the final stability
regions of P5s(z)). Later, in Section 3, we will show that both, |Rs(z)| < 1 and
|P5s(z)| < 1 when z ∈ [−0.98s2, 0].

Hence, we will write Rs(z) as a combination of the shifted Chebyshev poly-
nomials:

Rs(z) = b0T0 +

q
∑

j=1

m
∑

i=1

(

bi+m(j−1)TiT
j−1
m

)

+
s
∑

j=mq+1

(bjTj−mqT
q
m) , (3)

where Ti = Ti(x) = Ti(1+100z/(49s2)) are these shifted Chebyshev polynomials
(and for some values of q that we will discuss later). In this manuscript, we
have taken α = 49/100 (for Ti(1 + z/(αs2))), since we want that the internal
stability regions include the interval [−0.98s2, 0], and it is well known that
shifted Chebyshev polynomials obtain values smaller than 1 in [−2αs2, 0].

In this way, Rs(z) is expressed as a linear combination of shifted Chebyshev
polynomials. In the following section, we will first derive methods that have
Ti(1 + 100z/(49s2)) as stability functions (hence the internal stability is large),
and the linear combination of these schemes will become a first-order stabi-
lized method with the desired Rs(z) as stability function. Finally, fifth-order
algorithms are obtained with P5s(z) using extrapolation.

6



3. Deriving fixed-step algorithms

For this paper, a code called ESERK5 is developed. It contains fifth-order
extrapolated SERK schemes with nt up to 30, 000 stages (s up to 2000). The
way to obtain the fixed-step algorithms is explained in the following lines:

1. First of all, we obtain the polynomials Rs(z) taking µ = 192/100 in (1).
With this value for µ, the reader can check that |Rs(z)| < 0.277923 for
s ≥ 8, which guarantees that |P5s(z)| ≤ 0.95 when z ∈ [−0.98s2, 0]. For
1 ≤ s ≤ 7, |Rs(z)| reach values over λ = 0.277923, however |P5s(z)| ≤ 0.95
for all these s and z values.

We need to use extra precision when s is large. We calculated these polyno-
mials (with Mathematica) for s = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20 (in all these casesm = 2 and q = ⌊s/m⌋), s = 25, 30, 35, 40,
45, 50 (in all these cases m = 5 and q = s/m), s = 60, 70, 80, 90, 100 (in all
these cases m = 10 and q = s/m), s = 150, 200, 250, 300, 350, 400, 450, 500
(in all these cases m = 50 and q = s/m), s = 600, 700, 800, 900, 1000 (in all
these cases m = 100 and q = s/m), and s = 1200, 1400, 1600, 1800, 2000
(in all these cases m = 200 and q = s/m).

2. Later, we write Rs(z) as a combination of the modified Chebyshev poly-
nomials, following equation (3). It is necessary to solve a linear system
with a lower triangular matrix.

3. The stabilized explicit Runge-Kutta method is obtained through a three-
term recurrence formula:

g0 = y0,

g1 = g0 + αhf(g0),

gj = 2gj−1 − gj−2 + 2αhf(gj−1) j = 2, . . . ,m,

gm+1 = gm + αhf(gm),

gj = 2gj−1 − gj−2 + 2αhf(gj−1) j = m+ 2, . . . , 2m, (4)

. . .

gqm+1 = gqm + αhf(gqm),

gj = 2gj−1 − gj−2 + 2αhf(gj−1) j = qm+ 2, . . . , s,

and

y1 =
s
∑

j=0

bjgj (5)

where α = 100z/(49s2) and bj are the solutions of the linear system (3).

S1,1 = y1 for a given h, S2,1 = y2 for h/2, . . . , S5,1 = y5 for h/5.

7



4. The fifth-order method can be computed as:

S5,5 =
S1,1 − 64S2,1 + 486S3,1 − 1024S4,1 + 625S5,1

24
. (6)

Example: Let us consider the case s = m = 2, q is therefore 1.

(1.) We first calculate R2(z) taking µ = 192/100 in (1), precisely, we obtain
w0,2 = 37

25 , and

w1,2 =
T2

(

37
25

)

T ′
s

(

37
25

) =
2113

3700
,

and hence

R2(z) = 1 + z +
2113

10952
z2.

It is not really necessary to calculate P10(z) to derive our algorithm, how-
ever we can do it for studying the stability regions. We only need to apply
equation (2).

(2.) Now, we can write R2(z) as a combination of the modified Chebyshev
polynomials:

R2(z) =
2077539

13690000
T0(x) +

1634787

3422500
T1(x) +

5073313

13690000
T2(x),

with x = 1 + 100z/(49s2).

(3.) The stabilized explicit Runge-Kutta first-order method (with R2(z) as
stability function) is derived applying equation (4).

(4.) We utilize Richardson extrapolation to obtain the higher-order scheme.
Let us suppose that y0 ≈ y(x0) is the solution previously obtained, and
h is the length step for the following iteration. Using the latter step, a
first-order approximation is obtained, S1,1 ≈ y(x0 + h). If we utilize y0
and two steps of the first-order SERK scheme given in (3.) with h/2, then
we would obtain S2,1, and so on. Finally

S5,5 =
S1,1 − 64S2,1 + 486S3,1 − 1024S4,1 + 625S5,1

24

is a fifth-order approximation with P10(z) as stability function.

Some readers might wonder why these q > 1 values appear. The reason is
decreasing those propagation of errors mentioned above. As it was explained,
some higher-order stabilized explicit methods suffer from these problems (see
[17, 20, 28]). Hundsdorfer and Verwer reported amplification factors of O(109)
for ROCK2 with 200 stages, but those values are higher for ROCK4, and
DUMKA methods have similar difficulties.

In this aspect, the three-term recurrence proposed for RKC is a great ad-
vance. Hundsdorfer and Verwer included the study of this concept for RKC in

8



the chapter V.1.3 [20], and we can use a similar procedure to study these values
for ESERK schemes. Hundsdorfer and Verwer explained in page 431 that, with
the three recurrence formula over the full s-stages,

|Qsj | ≤ k(s− j − 1)(1 + Cε),

and therefore errors obtained with RKC satisfy

||en+1||2 ≤ ||en||2 +
1

2
s(s+ 1)Kmax

j
||rj ||2,

wnj defined as in Eq. (1.13) [20], w̃nj defined as in Eq. (1.14), Qjk, enj also as
they were defined in page 426.

With a similar goal, we choose m, q to make the coefficients bj ∼ O(1). For
us

en+1 = Rs(τA)en +
s
∑

j=1

bjQsj(τA)rj ,

(en+1 varies because we obtain our Runge-Kutta method from Eqs. (4) and (5)
in our paper). In our case, the internal stability region at stage j = vm + r is
given by (Tm(z))vTr(z). Therefore, in a similar way as it was demonstrated in
[20]:

|Qsj | ≤ k(m− r − 1)(1 + Cε),

(because |Tm(z)| < 1 for z ∈ [−0.98s2, 0]), and therefore

||en+1||2 ≤ ||en||2 +K

s
∑

j=0

bj(m− r + 1)||rj ||2.

Whenever bj ∼ O(1), with the procedure proposed for ESERK schemes, prop-
agation of errors grow with s × m = m2 × q < s2. This is why we think that
this procedure reduces slightly the propagation of errors. Actually, we think
that moderate m values help to decrease propagation of errors; however, for
large s values, if m is small we checked that bj grew significantly and there is
no improvement in this technique. Thus, when we developed SERK and later
ESERK schemes, we have chosen m in such a way that the coefficient of zs in
Rs(z) was similar (same order) to the coefficient of zs in (Tm(z))q.

In this way, it is possible to obtain fifth-order extrapolated schemes with
large stability regions near the real and negative semi-axis. In Fig. 1, we show
the values that Rs(z) (the stability function of the first-order stabilized explicit
Runge-Kutta scheme) and P5s(z) (the stability polynomial of the extrapolated
corresponding method) reach in this semi-axis (for s = 10 and 20). These plots
demonstrate that these new algorithms satisfy the expected properties.

Additionally, since µ = 192/100, these stability regions have width different
from 0 near the semi-axis. This means that the extrapolated schemes might
be able to compute efficiently some parabolic equations with (small enough)
advection terms. In Fig. 2, plots of some (for s = 7 and s = 14) stability
regions in the complex plane are provided.

9



-100 -80 -60 -40 -20

-0.2

0.2

0.4

0.6

0.8

1.0

-400 -300 -200 -100

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Stability domain of R10, x ∈ R Stability domain of R20, x ∈ R

-100 -80 -60 -40 -20

-0.5

0.5

1.0

-400 -300 -200 -100

-1.0

-0.5

0.5

1.0

Stability domain of P50, x ∈ R Stability domain of P100, x ∈ R

Figure 1: Comparison of the stability regions of polynomials R10 and its extrapolated P50,
and R20 and its extrapolated P100, in the real and negative semi-axis.

-50 -40 -30 -20 -10 0

-20

-10

0

10

20

-200 -150 -100 -50 0

-30

-20

-10

0

10

20

30

Stability domain of R7 Stability domain of R14

-50 -40 -30 -20 -10 0

-20

-10

0

10

20

-200 -150 -100 -50 0

-30

-20

-10

0

10

20

30

Stability domain of P35 Stability domain of P70

Figure 2: Comparison of the stability regions (in gray) of polynomials R7 and its extrapolated
P35, and R14 and its extrapolated P70, in the complex plane.

10



It is clear that P5s(z) polynomials have larger and (in general) wider stability
regions than Rs(z). We can see this in Table 1, where it is explained how the
stability regions in the real and negative semi-axis grow.

Table 1 specifies the values l∗s and d∗s = l∗s/s
2, ls and ds = ls/(15s)

2 for which
the polynomials Rs(z) and P5s(z) are stable in [−l∗s , 0] and [−ls, 0], respectively.
We did it for s = 20, 100, 400 and 2000 to check how ds converges for large s
values.

s nt = 15s l∗s d∗s ls ds
20 300 393.737 0.984343 398.884 0.004432
100 1500 9810.2 0.981020 9816.7 0.004363
400 6000 156942 0.980888 156948 0.004360
2000 30000 3923507 0.980877 3923513 0.004359

Table 1: Stability parameters of Rs(z) and P5s,2(z) in the real and negative semi-axis.

As we can check in Table 1, l∗s converges to ∼ 0.9808s2 (for large s values),
hence α = 100z/(49s2) is a good choice. ls is slightly larger as can be checked in
Table 1, ls ∼ 0.004359n2

t when nt takes very large values. These stability bounds
ls are clearly shorter (for a given n2

t value) than others for some second-order
schemes, hence RKC or ROCK2 are more efficient methods for large tolerances.
But higher-order schemes are very interesting when small errors are required.

With all of this, we obtain the following result:

Theorem 1. For the extrapolated stabilized explicit Runge-Kutta method de-
rived through equations (4) and (6), we have the following stability and consis-
tency properties:

(i) It is stable in the interval [−0.98s2, 0] (not only, but includes this region),
with s ≤ 2000. Additionally, the internal stability, at all the stages, in-
cludes this region. And there is not any propagation of errors at any stage.

(ii) Since the value Sj,k represents a numerical method of order k, the scheme
obtained with equation (6) converges with fifth-order, whenever the numer-
ical method is stable, and the right hand term in the system of ODEs is
six times continuously differentiable, C6.

Proof. (i) is the result of how equation (4) was derived, and the properties of
shifted Chebyshev polynomials described in this and the previous sections.

The demonstration of (ii) can be done in the same fashion as Theorems 9.1
and 9.2 in [16]. In this case, p = 1, i.e. S1,1 is first-order (the proof is similar to
the one given in [25], because we already demonstrated that R2(z) = 1+z+. . .).
Hence, S5,5 converges with fifth-order, whenever the numerical method is stable,
and f(t, u), the right hand term in the system of ODEs (u′(t) = f(t, u)), is C6.

This theorem involves high-order convergence for both, linear and nonlinear
problems. Also, we obtain a similar remark as in [16], p. 225: a great advantage

11



of this procedure (to create methods with extrapolation) is that it provides a
sequence of embedded methods, and allows some estimates of the local error
and strategies for variable order.

We already created a family of fourth-order methods in [31], and fifth-order
schemes in this article, and our idea is creating more families and combine all
of them in one algorithm.

4. Deriving variable-step and number of stages algorithm

The step size estimation and stage number selection are very similar to the
ones obtained for the ESERK4 algorithm described in [31]. First, we select
the step size in order to control the local error and then, choose the minimum
number of stages such that the stability properties are satisfied.

4.1. Step size selection

The best results (for these extrapolated schemes) were obtained using tech-
niques described in [16] for (traditional) extrapolated methods:

hnew = hold min
(

facmax,max
(

facmin, fac · (1/err)1/5
))

, (7)

with fac= 0.8, facmax= 10 (except after a rejection), facmin= 10−3.
A comparison between the estimated error and the prescribed tolerance de-

noted by err is calculated as usual:

err =

√

√

√

√

1

n

n
∑

i=1

(

(S5,5 − S5,4)i
sci

)2

, (8)

with
sci = (Atoli +max (|y0,i|, |S5,5,i|) ·Rtoli) /2, (9)

y0,i being the i-th component of the solution at the previous step, S5,5,i the
i-th component of the solution obtained through the extrapolation technique
(sc would be a weighted mean of Atol and Rtol).

(S5,5−S5,4)i is the i-th component of the estimation of the error, which can
be calculated as

S5,5 − S5,4 =
S1,1 − 32S2,1 + 162S3,1 − 256S4,1 + 125S5,1

24
=

= 125/24yh/5(x0 + h)− 32/3yh/4(x0 + h) + (10)

+27/4yh/3(x0 + h)− 4/3yh/2(x0 + h) + yh(x0 + h)/24.

Additionally, we try to decrease the number of rejected steps when solving
problems with non-smooth data. Hence, we employ a technique also used in
[26]:

h
(j)
n+i+1

h
(k)
n+i

≤ 1

12



for the two steps following the rejection (i = 0, 1) and

h
(j)
n+i+1

h
(k)
n+i

≤ 2.5

for the three steps after that (i = 2, 3, 4), unless the interval where there could
be jumps has passed. When the risk of rejections has decreased we allow again
that

hn+i+1

hn+i
≤ 10.

4.2. Stage number selection

We utilize, as usual in other Chebyshev codes (or stabilized explicit meth-
ods), a family of fifth-order methods with different numbers of stages, and we
choose the best number of stages according to the stability regions of the algo-
rithm.

In each step, we first select the step size in order to control the local error
as stated previously, then we select the number of stages so that the stability
property is satisfied

s >

√

√

√

√

hnewρ
(

∂f
∂y

)

0.98
, (11)

where ρ
(

∂f
∂y

)

is a bound for the spectral radius (the largest eigenvalue in ab-

solute value of the Jacobian of the function f(y)) and 0.98s2 is the estimate of
the bound of the stability interval.

For the estimation of the spectral radius several procedures have tradition-
ally been considered. If it is not possible to get an estimate of the spectral
radius easily, then a non-linear power method (see [40], for example) is usually
considered. Another way is to use the Gershgorin theorem

ρ

(

∂f

∂y

)

≤ max
i=1,...,neqn



−aii +

neqn
∑

j=1,j 6=i

|aij |



 .

The new code can employ any of them depending on the considered test problem.

5. Numerical experiments and comparisons

As it was commented before, there are a few codes for these kinds of par-
tial differential equations. In this section, we are trying to give some com-
parisons of the new code with other very well-known algorithms traditionally
used. We employed a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (PC with 8
cores) to create the numerical results. We used the gfortran compiler version
4.8.1. This code and the numerical examples are available at the web page
https://github.com/kleefeld80/ESERK5

13



We are comparing the new code with ESERK5 (the sequential algorithm)
with some codes proposed for diffusion and/or reaction-diffusion as RKC, ROCK4,
ESERK4, IRKC, and PIROCK, all written in Fortran (see [5] and references
therein).

ROCK4 and PIROCK, including some examples are freely available at the
address http://anmc.epfl.ch. RKC, with several drivers, can be freely down-
loaded at http://www.netlib.org/ode/.

In this manuscript, we are not trying to show that the new code ESERK5
is always better compared to the others. Actually all the solvers above are
excellent choices in general. Instead, we will try to show some advantages and
disadvantages of using any of the methods above, and we will try to show that,
when it is necessary to obtain small errors, it might be interesting using ESERK
algorithms and/or deriving new schemes with similar properties.

As usual, errors were calculated only at tend with infinity norm for the system
of ODEs (this is also called temporal error). As in most of articles on this topic
we used second-order approximations in space for the spatial semi-discretization,
because we are only trying to understand the behaviour of the codes for very
large systems of ODEs. Hence, errors due to spatial discretizations might be
larger than some temporal errors for small values tol, however these codes are
able to use higher-order discretizations in space with good results as it was
explained in [26].

Test 1: A 1D diffusion model

This is a simple diffusion equation taken from [10]. The problem under
consideration is given by

ut = uxx, x ∈ [0, 1],

with initial condition u(0, x) = a sin(
√
2x) − sin(x) and boundary conditions

u(t, 0) = 0, u(t, 1) = ae−2t sin(
√
2)−e−t sin(1), where a = cos(

√
2)/(

√
2 cos(2−1/2)).

In [10], the authors considered the variables yi(t) = u(t, i/(N + 1)), i =
1, . . . , N , and they spatially discretized the problem in the following way:

y′(t) = (N + 1)2















−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −2 1
0 0 0 . . . 1 −2















y(t) + (N + 1)2















0
0
...
0

φ(t)















with φ(t) = ae−νt sin(
√
2)− e−µt sin(1) and

µ = 2(N + 1)2
(

1− cos

(

1

N + 1

))

, ν = 2(N + 1)2

(

1− cos

( √
2

N + 1

))

.

The exact solution of the discretized (in space) problem is

yi(t) = ae−νt sin

( √
2i

N + 1

)

− e−µt sin

(

i

N + 1

)

,

14



and we have the property that µ → 1 and ν → 2 as N → ∞.
This is a simple example to support the theoretical results previously demon-

strated in Theorem 1. Here, we have considered N = 99 for which µ and ν
are approximately 0.9999916666947328 and 1.9999666668879534, respectively.

With this value of N , ρ
(

∂f
∂y

)

is bounded by 39990.1. Finally, we obtain the

numerical results with all the methods derived above (for all s values) for several
different k = ∆t values to check the fifth-order convergence when stability is
obtained.

Whenever 39990.1k < 0.98s2, Theorem 1 states that the schemes are stable
and should converge with fifth-order. In this experiment we chose k1 = 0.004,
k2 = 0.02, and k3 = 0.001, hence it means that all the methods with s > 12.78
are stable for all these k values. And any scheme with s > 9.03 is stable when
k ≤ 0.002. In Table 2, numerical errors are shown for s = 10, 40, 150 using
t = 1 and x = 1/2. An estimation of the numerical convergence is obtained

calculating log4

(

errk1

errk3

)

.

Method s = 10 s = 40 s = 150

k = 0.004 1.09078× 10974 9.23506× 10−10 6.19622× 10−10

k = 0.002 3.37361× 10−12 1.15327× 10−11 8.16161× 10−12

k = 0.001 3.15165× 10−13 8.16430× 10−13 4.27353× 10−13

Numerical convergence −− 5.0718 5.2509

Table 2: Numerical errors at t = 1, x = 1/2 with some fifth-order ESERK schemes in
Example 1. s = 10, 40, 150, and k = 0.1, 0.05, 0.025 were considered to study the stability and
consistency of the numerical methods.

First of all, if k is fixed, we can check that all the errors have similar mag-
nitudes for different s values. Logically, an exception is the case for ESERK
with s = 10, when k = 0.04 (due to stability). With other s, x, and k values,
other numbers for a numerical convergence rate were observed. However, they
are frequently between 3.9 and 5.3, at least for small k values.

Test 2: A combustion 2D model

The second problem under consideration is a two-dimensional non-linear
problem from combustion theory (see [20, 42] for example),

ut = d△u+
R

αδ
(1 + α− u)eδ(1−1/u), (12)

defined on the unit square for t > 0. The problem is subjected to the initial con-
dition u(x, y, 0) = 1. For t > 0 we have the zero Neumann boundary condition
at x = 0, y = 0 and the Dirichlet boundary condition u = 1 at x = 1, y = 1.
The parameter values in this problem are d = 2.5, α = 1, δ = 20, and R = 5.
We used N = 600 equispaced nodes in each variable and solved in the interval
[0, 1.48]. We used second-order approximations for the Neumann conditions.

This problem models a reaction of a mixture of two chemicals with u rep-
resenting the temperature of the mixture. For small times u is very smooth

15



r
0 0.2 0.4 0.6 0.8 1 1.2 1.4

u
(r
,t
)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t=1.45
t=1.46
t=1.47
t=1.48
t=1.49
t=1.50
t=1.51

Figure 3: The traveling front solution of the combustion Test 1 along the diagonal x = y. At
t = 1.5 and t = 1.51 the plots almost coincide due to steady-state arrival.

and large length steps can be used. Then ignition occurs, and u changes
very fast from near unity to 1 + α. In this region small steps or higher-order
schemes are mandatory. The reaction front reaches the boundary, near t = 1.5,
then a steady state results. Figure 3 shows an accurate reference solution
of the traveling front along the diagonal line x = y at several output times
(t = 1.45, 1.46, 1.47, . . . , 1.51) with r =

√

x2 + y2 on the horizontal axis.
First, in Table 3, numerical results at tend = 1.48 (L∞ errors) are shown

to demonstrate that RKC has some difficulties to obtain an accurate solution.
Additionally, readers can check that ESERK4 and ESERK5 are able to utilize
much larger number of stages than ROCK4.

Tolerance Method max. err. Time (s) NFE Steps Max
10−7 RKC 0.3910−1 738.03 73184 839 474

ROCK4 0.7637−6 7441.56 830215 16959 54
ESERK4 0.1060−3 3646.07 314278 241 7000
ESERK5 0.4943−4 4075.21 456730 169 13500

10−9 RKC 0.1816−2 1645.25 161361 3893 224
ROCK4 0.1617−6 15155.73 1481171 51089 34
ESERK4 0.6988−5 7392.65 588785 788 4000
ESERK5 0.2097−6 5709.96 637079 388 7500

Table 3: Maximal absolute error, CPU times, number of function evaluations, steps, and
maximal steps for the methods RKC, ROCK4, ESERK4, and ESERK5 using different values
for the tolerances in the combustion 2D model.

As we can see in this Table 3, all methods achieve a poor accuracy compared
to the prescribed tolerance (except ROCK4 when tol = 10−7). This is due to the
fact that the problem is very stiff near the endpoint. In this type of problems,

16



max. abs. error
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

C
P
U

ti
m
e
(s
ec
on

d
s)

10
3

10
4

10
5

RKC
ROCK4
ESERK4
ESERK5

Figure 4: Maximal absolute error versus CPU times in seconds for the second example using
RKC, ROCK4, ESERK4, and ESERK5.

we noticed that these integrators had similar difficulties, specially RKC. This
is explained in the book by Hundsdorfer and Verwer [20]. It is related with the
fact that g′(u) (where g(u) is the non-linear reaction term) is positive during a
small interval close to (and including) the endpoint.

In Figure 4, we can also check how codes based on lower-order schemes are
fast when large tolerances and errors are obtain. However, they become more
expensive compared to higher-order methods when small errors are required.
ESERK5 is the fastest in this numerical example when errors are in the range
of [10−5, 10−8].

Test 3: A 2D Brusselator problem with reaction

The third example considered in this paper is a two-dimensional Brusselator
reaction-diffusion problem

∂u

∂t
= A+ u2v − (B + 1)u+ α

(

∂2u

∂x2
+

∂2u

∂y2

)

, (13)

∂v

∂t
= Bu− u2v + α

(

∂2v

∂x2
+

∂2v

∂y2

)

.

We solve this problem for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ tend = 1, using A = 1.3,
B = 2 × 106, and α = 0.1, with periodic boundary conditions u(x + 1, y, t) =
u(x, y, t) = u(x, y + 1, t) and the initial condition chosen as in [5]:

u(x, y, 0) = 22y(1− y)3/2, v(x, y, 0) = 27x(1− x)3/2.

We discretized u, v in space with two N×N uniform meshes, where N = 400.

17



10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Figure 5: Maximal absolute error versus CPU times in seconds for the third example using
IRKC, PIROCK and ESERK5.

Thus, ρ ∼ 2.4 × 106 and ρD ∼ 8αN2 = 1.28 × 105 (the spectral radius of the
diffusion term).

In Figure 5, we are comparing the results obtained with ESERK5, ROCK4,
IRKC, and PIROCK. The latter two are two excellent codes for these types
of problems with diffusion plus very stiff reaction. As expected, these lower-
order schemes are very fast when large tolerances are employed. However, they
become more expensive compared to ESERK5 when small errors are required.

ROCK4 obtains excellent results in this numerical example, including when
small errors are necessary. However, ROCK4 utilizes the maximum step in time
for some of the tolerances. For longer tend values, the solution gets smoother and
ROCK4 employs the maximum length step in time. The advantage of ESERK5
is that this maximum length step in time is more than 40 times bigger than for
ROCK4. Thus, when tend is bigger (or B and N are larger) is able to obtain
accurate solutions faster.

Although the reaction term makes the use of implicit-explicit algorithms
very reasonable, ESERK schemes are able to approximate efficiently these types
of problems if the reaction term is not extremely large. This is due to the
large number of stages that they are able to employ without suffering from
propagation of errors or internal stability.

6. Conclusions and future goals

In this article, we derive fifth-order stabilized explicit Runge-Kutta methods
with large number of stages and good internal stability. These schemes are

18



very useful to solve non-linear parabolic PDEs in several dimensions, specially
if small tolerances are required. We checked that they are also very efficient
when the eigenvalues of the large system of ODEs are large in absolute value
(over O(105)).

The technique employed in this paper, and also in [31] can be utilized to
obtain large families of extrapolated SERK algorithms, and with different orders
of convergence. Hence, it would be interesting to combine them in one code that
allows changing the step size, the number of stages, and the order of convergence
as it was done with extrapolated traditional explicit Runge–Kutta methods for
ODEX. This might be studied in the future. Additionally, these methods can
be combined with other implicit A-stable Runge-Kutta methods to solve other
types of problems with advection and/or reaction as in [5, 13].

Additionally, we will consider a parallelization technique to reduce the CPU
time of these codes. As with any other extrapolated explicit Runge-Kutta
method, all the values Tj,1 can be computed independently of each other. In
our case, the computational time employed by ESERK4 would decrease from
a theoretical point of view by a factor of 2.5, and in the case of ESERK5, the
CPU time would decrease almost by a factor of 3.

Acknowledgements

The authors would like to thank Assyr Abdulle, Britta Kleefeld, Lawrence
Shampine, and Gilles Vilmart for providing us some codes, and their explana-
tions about these algorithms.

[1] A. Abdulle. Chebyshev methods based on orthogonal polynomials. PhD thesis,
University of Geneva, 2001.

[2] A. Abdulle. Fourth order Chebyshev methods with recurrence relation. SIAM J.
Sci. Comput., 23(6):2041–2054, 2001.

[3] A. Abdulle and S. Cirilli. S-ROCK: Chebyshev methods for stiff stochastic dif-
ferential equations. SIAM J. Scientific Computing, 30(2):997–1014, 2008.

[4] A. Abdulle and A. A. Medovikov. Second order Chebyshev methods based on
orthogonal polynomials. Numerische Mathematik, 90(1):1–18, 2001.

[5] A. Abdulle and G. Vilmart. Pirock: A swiss-knife partitioned implicit–explicit or-
thogonal Runge–Kutta–Chebyshev integrator for stiff diffusio–advection–reaction
problems with or without noise. Journal of Computational Physics, 242:869–888,
2013.

[6] R. C. Aiken. Stiff Computation. Oxford University Press, Inc., New York, NY,
USA, 1985.

[7] V. Alexiades, G. Amiez, and P.-A. Gremaud. Super-time-stepping acceleration of
explicit schemes for parabolic problems. Communications in Numerical Methods
in Engineering, 12(1):31–42, 1996.

19



[8] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit Runge-Kutta
methods for time-dependent partial differential equations. Appl. Numer. Math.,
25(2-3):151–167, 1997.

[9] H. P. Bhatt and A. Q. M. Khaliq. The locally extrapolated exponential time dif-
ferencing LOD scheme for multidimensional reaction–diffusion systems. Journal
of Computational and Applied Mathematics, 285:256–278, 2015.

[10] J. C. Butcher and N. Rattenbury. ARK methods for stiff problems. Applied
Numerical Mathematics, 53(2):165–181, 2005.

[11] J. Cash. The integration of stiff initial value problems in ODEs using modi-
fied extended backward differentiation formulae. Computers & Mathematics with
Applications, 9(5):645–657, 1983.

[12] M. Cubillos-Moraga. General-domain compressible Navier-Stokes solvers exhibit-
ing quasi-unconditional stability and high-order accuracy in space and time. PhD
thesis, California Institute of Technology, 2015.

[13] M. Duarte, Z. Bonaventura, M. Massot, A. Bourdon, S. Descombes, and T. Du-
mont. A new numerical strategy with space-time adaptivity and error control for
multi-scale streamer discharge simulations. Journal of Computational Physics,
231(3):1002–1019, 2012.

[14] M. Duarte, S. Descombes, C. Tenaud, S. Candel, and M. Massot. Timespace
adaptive numerical methods for the simulation of combustion fronts. Combustion
and Flame, 160(6):1083–1101, 2013.

[15] T. Dumont, M. Duarte, S. Descombes, M.-A. Dronne, M. Massot, and V. Louvet.
Simulation of human ischemic stroke in realistic 3D geometry. Communications
in Nonlinear Science and Numerical Simulation, 18(6):1539–1557, 2013.

[16] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations
I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag New York, Inc., NY,
USA, 1993.

[17] E. Hairer and G. Wanner. Solving ordinary differential equations. II: Stiff and
differential-algebraic problems. Springer, Berlin, 1996.

[18] A. C. Hindmarsh. LSODE and LSODI, two new initial value ordinary differential
equation solvers. ACM SIGNUM Newsletter, 15(4):10–11, 1980.

[19] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large
systems of differential equations. SIAM J. Sci. Comp., 19(5):1552–1574, 1998.

[20] W. H. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations. Springer, Berlin, Heidelberg, 2007.

[21] L. Ixaru, G. V. Berghe, and H. D. Meyer. Frequency evaluation in exponential
fitting multistep algorithms for ODEs. Journal of Computational and Applied
Mathematics, 140(1-2):423–434, 2002.

[22] D. I. Ketcheson and A. J. Ahmadia. Optimal stability polynomials for numer-
ical integration of initial value problems. Commun. Appl. Math. Comput. Sci.,
7(2):247–271, 2012.

20



[23] D. I. Ketcheson and U. bin Waheed. A comparison of high order explicit Runge-
Kutta, extrapolation, and deferred correction methods in serial and parallel.
CAMCoS, 9(2):175–200, 2014.

[24] A. Q. M. Khaliq, J. Mart́ın-Vaquero, B. Wade, and M. Yousuf. Smoothing
schemes for reaction-diffusion systems with nonsmooth data. Journal of Com-
putational and Applied Mathematics, 223(1):374–386, 2009.

[25] B. Kleefeld and J. Mart́ın-Vaquero. Serk2v2: A new second-order stabilized ex-
plicit Runge-Kutta method for stiff problems. Numerical Methods for Partial
Differential Equations, 29(1):170–185, 2013.

[26] B. Kleefeld and J. Mart́ın-Vaquero. Serk2v3: solving mildly stiff nonlinear par-
tial differential equations. Journal of Computationald & Applied Mathematics,
299:194–206, 2016.

[27] V. I. Lebedev. A new method for determining the roots of polynomials of least
deviation on a segment with weight and subject to additional conditions. part II.
Russian Journal of Numerical Analysis and Mathematical Modelling, 8(5):397–
426, 1993.

[28] V. I. Lebedev and S. A. Finogenov. Solution of the parameter ordering problem
in chebyshev iterative methods. USSR Computational Mathematics and Mathe-
matical Physics, 13(1):21–41, 1974.

[29] J. Mart́ın-Vaquero and B. Janssen. Second-order stabilized explicit Runge-Kutta
methods for stiff problems. Computer Physics Communications, 180(10):1802–
1810, 2009.

[30] J. Mart́ın-Vaquero, A. Q. M. Khaliq, and B. Kleefeld. Stabilized explicit Runge-
Kutta methods for multi-asset American options. Computers & Mathematics with
Applications, 67(6):1293–1308, 2014.

[31] J. Mart́ın-Vaquero and B. Kleefeld. Extrapolated stabilized explicit Runge–Kutta
methods. Journal of Computational Physics, 326:141–155, 2016.

[32] J. Mart́ın-Vaquero and J. Vigo-Aguiar. Exponential fitting BDF algorithms: Ex-
plicit and implicit 0-stable methods. Journal of Computational and Applied Math-
ematics, 192(1):100–113, 2006.

[33] A. A. Medovikov. High order explicit methods for parabolic equations. BIT
Numerical Mathematics, 38(2):372–390, 1998.

[34] L. Noels, L. Stainier, and J.-P. Ponthot. Combined implicit/explicit time-
integration algorithms for the numerical simulation of sheet metal forming. Jour-
nal of Computational and Applied Mathematics, 168(1-2):331–339, 2004.

[35] S. O’Sullivan. A class of high-order Runge–Kutta–Chebyshev stability polynomi-
als. Journal of Computational Physics, 300:665–678, 2015.

[36] S. O’Sullivan. Runge-Kutta-Gegenbauer methods for advection-diffusion prob-
lems. ArXiv e-prints, Dec. 2017.

21



[37] S. O’Sullivan and T. P. Downes. A three-dimensional numerical method for mod-
elling weakly ionized plasmas. Monthly Notices of the Royal Astronomical Society,
376(4):1648–1658, 2007.

[38] S. O’Sullivan and C. O’Sullivan. On the acceleration of explicit finite difference
methods for option pricing. Quantitative Finance, 11(8):1177–1191, 2011.

[39] L. Skvortsov. Explicit stabilized Runge-Kutta methods. Computational Mathe-
matics and Mathematical Physics, 51(7):1153–1166, 2011.

[40] B. Sommeijer, L. Shampine, and J. Verwer. RKC: An explicit solver for parabolic
PDEs. Journal of Computational and Applied Mathematics, 88(2):315–326, 1997.

[41] M. Torrilhon and R. Jeltsch. Essentially optimal explicit Runge-Kutta meth-
ods with application to hyperbolic-parabolic equations. Numerische Mathematik,
106(2):303–334, 2007.

[42] J. G. Verwer. Explicit Runge-Kutta methods for parabolic partial differential
equations. Appl. Numer. Math., 22(1–3):359–379, 1996.

[43] Z. Zlatev. Computer Treatment of Large Air Pollution Models. Environmental
Science and Technology Library. Springer Netherlands, 2012.

Appendix:

In this section we provide some of the coefficients developed for this work.
Unfortunately all the new schemes required over 15000 new coefficients, this is
time-consuming, but we are not able to provide all of them in this manuscript.
However, they can be found in https://github.com/kleefeld80/ESERK5, lines
37 to 15638.

For s = 1 the final bi coefficients are:

b0 = 0.51, b1 = 0.49.

For s = 2 the final bi coefficients are:

b0 = −0.2128171597633136, b1 = 0.9637562130177514,

b2 = 0.2490609467455621.

For s = 3, bi coefficients are:

b0 = 0.1712922718556347, b1 = −0.1423943632649187,

b2 = 0.3031160937815012, b3 = 0.6679859976277827.

For s = 4, final coefficients are:

b0 = 0.1412541319644020, b1 = −0.8685875774123184, b2 = 0.4776631958662505,

b3 = 1.06647573423533692, b4 = 0.18319451534632894.

22



For s = 5, bi coefficients are:

b0 = −0.07055272331742087, b1 = −0.28314320544924802,

b2 = 0.19785090029766025, b3 = −0.42177903459881749,

b4 = 0.34798179035774081, b5 = 1.22964227271008532.

For s = 6, bi coefficients are:

b0 = −0.0233121086266971, b1 = −0.1335872416064247, b2 = −0.8078161877275098,

b3 = 0.0354768957832420, b4 = 0.1496077877880309,

b5 = 0.5749883471254331, b6 = 1.2046425072639256.

For s = 7, bi coefficients are:

b0 = −0.0618325593695405, b1 = 0.2458501093889481,

b2 = −0.2227872829351750, b3 = −1.1522803607019805,

b4 = 0.2724834533245227, b5 = −0.9466350971213604,

b6 = 0.4910735130318972, b7 = 2.3741282243826884.

For s = 8, final bi coefficients are:

b0 = 0.2676299331370952, b1 = −0.0061415869134074, b2 = −0.0754137605301323,

b3 = −0.4137326085817093, b4 = −2.2197559533564896,

b5 = 0.0418316007174432, b6 = 0.1982519692491985,

b7 = 0.8594290797003330, b8 = 2.3479013265776686.

For s = 9, final coefficients are:

b0 = 0.0433423349672831, b1 = 0.2831471867437382,

b2 = −0.1969117505913101, b3 = 1.0143522195178293,

b4 = −0.5445644897846778, b5 = −3.4422730603162499,

b6 = 0.4161605174583901, b7 = −1.9943115249036625,

b8 = 0.7661598440442524, b9 = 4.6548987228644070.

For s = 10, bi coefficients are:

b0 = 0.0118598151160970, b1 = 0.0831381079859492, b2 = 1.3652430804804162,

b3 = −0.0182747403058947, b4 = −0.1762850131883753,

b5 = −1.0169885262162042, b6 = −5.5937613871887220,

b7 = 0.0531212686641022, b8 = 0.2837514939268146,

23



b9 = 1.3863138835464458, b10 = 4.6218820171793711.

For s = 11, bi coefficients are:

b0 = 0.0396998143921759, b1 = −0.2612331415070279,

b2 = 0.2237774628808507, b3 = 1.6966675622686337,

b4 = −0.4913194960095769, b5 = 3.1080707614085650,

b6 = −1.2286488173060305, b7 = −9.1168936653993763,

b8 = 0.6778510530177390, b9 = −4.1063172037290536,

b10 = 1.2693754026307855, b11 = 9.1889702673523152.

For s = 12, final coefficients are:

b0 = −0.2721732816746095, b1 = 0.0023242317945640, b2 = 0.0583515040445118,

b3 = 0.4288342559984806, b4 = 4.9590570916533354,

b5 = −0.0397726675163696, b6 = −0.3657178767124540,

b7 = −2.3156825268742213, b8 = −13.4392531313636734,

b9 = 0.0707761623683441, b10 = 0.4228299401098627,

b11 = 2.3479638334679581, b12 = 9.1424624647042709.

For s = 13, bi coefficients are:

b0 = −0.0323291168689784, b1 = −0.2804146299695864,

b2 = 0.2072403341391079, b3 = −1.5857902313554160,

b4 = 0.7892241538284155, b5 = 6.7610317353997789,

b6 = −1.1280644757467384, b7 = 8.4128930401780590,

b8 = −2.6810327635279448, b9 = −22.6441139374225888,

b10 = 1.1533853320305336, b11 = −8.3664929427388960,

b12 = 2.1899914542080842, b13 = 18.2044720478461697.

For s = 14, bi coefficients are:

b0 = −0.0066746193320942, b1 = −0.0627341688276580, b2 = −1.9186006564469559,

b3 = 0.0108195027269256, b4 = 0.1862028740070028,

b5 = 1.5168549709345810, b6 = 15.4846722522406338,

b7 = −0.0762943554961964, b8 = −0.7099428072976171,

b9 = −5.0978612128849602, b10 = −31.3136629305042665,

b11 = 0.0966892528144702, b12 = 0.6416072939932105,

24



b13 = 4.1151576626715777, b14 = 18.1337669414013465.

For s = 15, bi coefficients are:

b0 = −0.0303749487922495, b1 = 0.2676948265526194,

b2 = −0.2342348247235180, b3 = −2.2369116983358381,

b4 = 0.7382581599821140, b5 = −6.4025911985291914,

b6 = 2.3691160375685935, b7 = 22.4404831319297990,

b8 = −2.4948213905392395, b9 = 21.2665447333875015,

b10 = −5.7573754412653146, b11 = −54.0325218520891823,

b12 = 2.0255889138384524, b13 = −16.9513244714478901,

b14 = 3.8909179921272460, b15 = 36.1415520303361006.

25


